• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simultaneous inversion of thermal and hydrogeologic data

Woodbury, Allan David January 1987 (has links)
The question that is addressed in this thesis is: can a simultaneous inverse scheme involving thermal and hydrologic data resolve hydrologic model parameters to a better degree than hydrologic data alone? The first chapter sets the framework for this question by first reviewing linear and non-linear inverse problems and then illustrating the advantages of a simultaneous inverse of two different data sets through the use of a simple example. It is the goal of Chapter 2 to examine current methodologies for stating and solving the inverse problem. A review of the maximum likelihood approach is presented, and a construction formalism is adopted by introducing a series of objective functionals (norms) which are minimized to yield a variety of possible models. The inverse is carried out using a modification of a constrained simplex procedure. The algorithm requires no derivative computations and can be used to minimize an arbitrarily complicated non-linear functional, subject to non-linear inequality constraints. The algorithm produces a wide variety of acceptable models clustered about a global minimum, each of which generates data that match observed values. The inverse technique is demonstrated on a series of one and two-dimensional synthetic data sets, and on a hydraulic head data set from Downie Slide, British Columbia, Canada. At this site, four parameters are determined; the free-surface position of the water table and three boundary conditions for the domain. Further simulations using a theoretical data set with assumed properties similar to that of Downie Slide show that with noise free data, and an adequate spacing between points it is possible to interpolate an unbiased estimate of hydraulic head data at all nodes in the equivalent discretized domain. When the inverse technique is applied, the domain's conductivity structure is correctly identified when enough prior log-conductivity information is available. The implications for Downie Slide are that in order to construct anything but a simple hydrogeologic model, accurate field measurements of hydraulic head are required, as well as well-defined estimates of hydraulic conductivity, a better spacing between measurements, and adequate knowledge of the boundary conditions. Chapter 3 is devoted to developing the idea of a joint inversion scheme involving both thermal and hydrologic data. One way of overcoming data limitations (sparse hydraulic head or few hydraulic conductivity estimates) in an inverse problem is to introduce an independently collected data set and apply simultaneous or joint inversion. The joint inversion method uses data from a number of different measurements to improve the resolution of parameters which are in common to one or more functional relationships. One such data set is subsurface temperature, which is sensitive to variations in hydraulic conductivity. In Chapter 3, the basic concepts of heat and fluid transfer in porous media with emphasis on forced convective effects are reviewed, followed by inversion of theoretical data and a re-investigation of the hydrogeology of Downie Slide, augmented with thermal data and a simultaneous inverse. Additional runs on a heterogenous medium presented in Chapter 2 are carried out. With a good temperature data base, thermal properties can be properly resolved. However, in this stochastic problem the addition of thermal data did not condition .the inverse to a greater degree than accomplished with the addition of prior information on log-conductivity. The benefits of including thermal data and applying a joint inversion can be substantial when considering the more realistic problem of uncertain boundary conditions. The simultaneous inverse is also applied to the Downie Slide data set examined in Chapter 2. Unfortunately, with a homogeneous hydraulic conductivity, all that can be determined from a hydraulic head inverse are ratios of flux to hydraulic conductivity. By including thermal data, the value of hydraulic conductivity can be determined at this site. Some of the model parameters (basal heat flux, thermal conductivity, specified head boundaries) are not resolved well by the joint scheme. None theless the constructed models do offer valuable insight into the hydrogeology of the field site. The constructed models persistently show a hydraulic conductivity value of about 1 x 10⁻⁷ m/sec, which is consistent with previous estimates of hydraulic conductivity at the site. A further comparison with the inverse results in Chapter 2 show good agreement between the two inverses for the hydraulic properties. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
2

APPLICATION OF STABLE ISOTOPES OF OXYGEN, HYDROGEN, AND CARBON TO HYDROGEOCHEMICAL STUDIES, WITH SPECIAL REFERENCE TO CANADA DEL ORO VALLEY AND THE TUCSON BASIN (GEOCHEMISTRY, ISOTOPE, CARBON-14).

CHENG, SONG-LIN. January 1984 (has links)
Hydrogeochemical studies are generally qualitative in nature. The goal of this study is to investigate the possibility of quantitative interpretation of hydrogeochemistry by considering the chemical characteristics and the isotopic compositions of oxygen, hydrogen, and carbon of the water. This study examines ephemeral stream and well waters from Canada del Oro valley, southern Arizona. By chemical and isotopic considerations, this study finds that the change of chemical composition of the wash water was mainly due to water-rock interaction. The concentrations of dissolved constituents increase between 10 to 50% from upstream to downstream samples, while the evaporation loss of water is less than 3%. By chemical and isotopic considerations of the well waters, this study identifies three recharge waters in the CDO ground-water system. The chemical and water isotopic compositions of the well waters are results of mixing between these three recharge waters and subsequent dissolution of the aquifer. By thermodynamic consideration, albite, kaolinite, montmorillonite, and calcite are the main phases that influence the chemical characteristics of this ground-water system. Simulations with the computer program PHREEQE verifies the above conclusions. The mechanisms that influence the chemical and carbon isotopic compositions of the water are quite different in a system open to a CO2 gas reservoir than in a closed system. Deines, Langmuir, and Harmon (1974) derived a set of chemical-isotopic equations to calculate the carbon isotopic composition of water under open system condition. Wigley, Plummer, and Pearson (1978) formulated a mass transfer equation to calculate the change of carbon isotopic composition of natural water in closed system environment. This study implements these two type of equations as a subroutine--CSOTOP to the computer program PHREEQE. With this PHREEQE-CSOTOP package, the evolution of carbon chemical and isotopic composition of natural water can be conveniently modeled from open to closed system conditions. This study also uses this package to date water samples from the Tucson basin, and finds that choice of reaction path may cause a difference in carbon-14 age of up to a few thousand years. This study concludes that it is possible to rigorously interpret hydrogeochemistry in a quantitative way. With sufficient measurements to define the reaction path, followed by thermodynamic consideration, chemical-isotopic evaluation, and computer modeling, one should be able to achieve this goal.

Page generated in 0.1082 seconds