• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Groundwater flow and recharge within the Barton Springs segment of the Edwards Aquifer, southern Travis and northern Hays Counties, Texas

Hauwert, Nico Mark 07 November 2011 (has links)
The Barton Springs Segment, part of the karstic Edwards aquifer in Central Texas, is a Sole Source aquifer, is habitat to rare karst species, and provides water to a well-loved municipal swimming pool, yet its hydrogeologic properties remain insufficiently understood. For this study, the hydrogeologic characteristics of the Barton Springs Segment were investigated using several approaches, including mapping of hydrostratigraphic units and faults, measurement of upland infiltration, groundwater traces, and aquifer tests. The depositional environment, diagenesis, fracturing, down-dropped and dipping faulted blocks, and subsequent dissolution were determined to play important roles in controlling groundwater flow-path development within the Barton Springs Segment. In particular, downdropped fault blocks create groundwater gradients to the southeast that influence flow in the Edwards outcrop area. Upland internal drainage basins were found to be extremely efficient at conveying recharge to the underlying aquifer. The maturity of natural internal drainage sinkholes can be measured by its bowl volume, which grows in proportion to the catchment area it captures. A 19-hectare internal drainage basin, HQ Flat sinkhole, was monitored for rainfall, evapotranspiration, soil moisture, and discrete runoff to the cave drain. During a 505-day period, 5.5% of measured rainfall entered the cave drain as discrete recharge, 26% of measured rainfall infiltrated through soils on the slopes, and the remaining 68% was lost through evapotranspiration. This amount of upland infiltration is consistent with infiltration measurements in other karst areas and is much larger than the 1% upland recharge of rainfall that was previously estimated. A chloride mass balance indicates that at the adjacent Tabor research site, about 50% of rainfall infiltrates to a 6-meter depth. Dye-tracing and pump tests demonstrated that primary and secondary groundwater flow paths are the major influence on transmissivity within the Barton Springs Segment. Groundwater tracing breakthroughs reveal very high advection and relatively low dispersion. Drawdown response to pump tests indicates a very high degree of anisotropy, controlled by location of groundwater flow paths. Overall the Barton Springs Segment is a mature karst aquifer with highly developed rapid, discrete network for both recharge and groundwater-flow. / text

Page generated in 0.0546 seconds