Spelling suggestions: "subject:"hydrogeomorphic 4approach"" "subject:"hydrogeomorphic 3dapproach""
1 |
A Comparison of Three Rapid Evaluation Procedures for Pine Savanna WetlandsHenderson, Cynthia Joan 04 August 2001 (has links)
Inception of the Clean Water Act in 1972 resulted in regulation of activities in wetlands through Section 404. Regulatory agencies like the Mississippi Department of Marine Resources (MDMR) have tried to find methods to rapidly evaluate wetlands. This study compares three rapid evaluation methods, Hydrogeomorphic Approach (HGM), Wetlands Rapid Assessment Procedure (WRAP), and Wetland Evaluation System (WES), based on their scoring of a group of reference and mitigation wetland sites. Repeatability was studied by scoring a group of sites twice. The non-parametric Spearman?s correlation was used to compare the three methods. In this study, HGM was most repeatable followed by WES and WRAP. Comparisons of overall scores using the Spearman correlation found the strongest correlation between HGM and WES, although all pairings were significantly correlated (p< 0.05). This study determined HGM was the optimum method for the MDMR because due to repeatability and producing results similar to the other two methods.
|
2 |
A Comparison of the HGM Approach to the RBP Method of Evaluating Reconstructed Streams on Surface Coal MinesOsborne, Caudill 12 April 2019 (has links)
ABSTRACT
A review of annual monitoring reports for stream restoration projects on surface coal mines in the central Appalachian Mountains found that the criteria used for judging the success of the projects was generally based on visual assessments of habitat structure which were evaluated using the Rapid Bioassessment Protocol (RBP) (Palmer and Hondula, 2014). In recent years the Hydrogeomorphic Approach (HGM), which was originally developed to evaluate wetlands, has been adapted for stream evaluations as well (Summers, et al., 2017). Both of these methods are primarily a means to determine if suitable habitat structure and riparian growth are present to support aquatic life. It is assumed that if habitat structure is suitable then macroinvertebrate and other life will be present. However, each of these two methods place emphasis on different aspects of habitat and riparian structure. The primary purpose of this project is to compare and contrast how effective these two methods are at evaluating reconstructed streams on surface coal mines. A secondary objective is to determine if macroinvertebrate assemblages in reconstructed streams is significantly different from that of reference streams not impacted by mining. Research on benthic community structure downstream of coal mining activities suggests that even after many decades taxa richness and abundance still have not recovered from indirect impacts (Petty, et al., 2010). Information on reconstructed streams directly impacted is lacking. This project evaluates streams that were reconstructed five years prior using the RBP and HGM methods, and compares them to local reference streams that have minimal to no mining impacts. Multiple benthic metrics are also used to evaluate community structure.
REFERENCES
Petty, J. Todd, Jennifer B. Fulton, Michael P. Strager, George T. Merovich Jr., James M. Stiles, and Paul F. Ziemkiewicz. 2010. Lanscape indicators and thresholds of stream ecological impairment in an intensely mined Appalachian watershed. Journal of the North American Benthological Society, 29(4): 1292-1309.
Palmer, Margaret A., and Kelly L. Hondula. 2014. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia. Environmental Science and Technology 48: 10552-10560.
Summers, Elizabeth A., Chris V. Noble, Jacob F. berkowitz, and Frank J. Spilker. 2017. Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia. ERDC/EL TR-17-1.
|
Page generated in 0.0664 seconds