• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing a real time hydraulic model and a decision support tool for the operation of the Orange River.

Fair, Kerry. January 2002 (has links)
This thesis describes the development of a decision support tool to be used in the operation of Vanderkloof Dam on the Orange River so that the supply of water to the lower Orange River can be optimised. The decision support tool is based on a hydrodynamic model that was customised to incorporate real time data recorded at several points on the river. By incorporating these data into the model the simulated flows are corrected to the actual flow conditions recorded on the river, thereby generating a best estimate of flow conditions at any given time. This information is then used as the initial conditions for forecast simulations to assess whether the discharge volumes and schedules from the dam satisfy the water demands of downstream users, some of which are 1400km or up to 8 weeks away. The various components of the decision support system, their functionality and their interaction are described. The details regarding the development of these components include: • The hydraulic model of the Orange River downstream of Vanderkloof Dam. The population and calibration of the model are described. • The modification of the code of the hydrodynamic engine so that real time recorded stage and flow data can be incorporated into the model • The development of a graphical user interface to facilitate the exchange of data between the real time network of flow gauging stations on the Orange River and the hydraulic model • The investigation into the effect of including the real time data on the simulated flows • Testing the effectiveness of the decision support system. / Thesis (M.Sc.)-University of Natal, Durban, 2002.
2

Integrating hydro-climatic hazards and climate changes as a tool for adaptive water resources management in the Orange River Catchment.

Knoesen, Darryn Marc. January 2012 (has links)
The world’s freshwater resources are being placed under increasing pressure owing to growth in population, economic development, improved standards of living, agricultural intensification (linked mainly to irrigation), pollution and mismanagement of available freshwater resources. Already, in many parts of the Orange River Catchment, water availability has reached a critical stage. It has become increasingly evident that water related problems can no longer be resolved by water managers alone, owing to the problems becoming more interconnected with other development related issues, as well as with social, economic, environmental, legal and political factors. With the advent of climate change and the likelihood of increases in extreme events, water managers’ awareness of uncertainties and critical reflections on the adequacy of current management approaches is increasing. In order to manage water resources effectively a more holistic approach is required than has hitherto been the case, in which technological, social and economic development are linked with the protection of natural ecosystems and with dependable projections of future climatic conditions. To assess the climate risk connected with rural and urban water management, and to develop adaptive strategies that can respond to an increasingly variable climate that is projected into the future and help to reduce adverse impacts, it is necessary to make connections between climate related hazards, climate forecasts as well as climate change, and the planning, design, operation, maintenance, and rehabilitation of water related infrastructure. Therefore, adaptive water resources management (AWRM), which in essence is “learning by doing”, is believed to be a timely extension of the integrated water resources management (IWRM) approach as it acknowledges uncertainty and is flexible in that it allows for the adjustment of actions based on information learned about the system. Furthermore, it is suggested that climate risk management be imbedded within the AWRM framework. The objective of the research presented in this thesis is to develop techniques to integrate state-of-the-art climate projection scenarios – which forms part of the first step of the adaptive management cycle – downscaled to the regional/local scale, with hydro-climatic hazard determination – which forms part of the first step in the risk management process – in order to simulate projected impacts of climate change on hydro-climatic hazards in the Orange River Catchment (defined in this study as those areas of the catchment that exist within South Africa and Lesotho). The techniques developed and the results presented in this study can be used by decision-makers in the water sector in order to make informed proactive decisions as a response to projected future impacts of hydro-climatic hazards – all within a framework of AWRM. Steps towards fulfilling the above-mentioned objective begins by way of a comprehensive literature review; firstly of the study area, where it is identified that the Orange River Catchment is, in hydro-climatic terms, already a high risk environment; and secondly, of the relevant concepts involved which are, for this specific study, those pertaining to climate change, and the associated potential hydro-climatic impacts. These include risk management and its components, in order identify how hazard identification fits into the broader concept of risk management; and water resources management practices, in order to place the issues identified above within the context of AWRM. This study uses future projections of climate from five General Circulation Models, all using the SRES A2 emission scenario. By and large, however, where techniques developed in this study are demonstrated, this is done using the projections from the ECHAM5/MPI-OM GCM which, relative to the other four available GCMs, is considered to provide “middle of the road” projections of future climates over southern Africa. These climate projections are used in conjunction with the locally developed and widely verified ACRU hydrological model, as well as a newly developed hydro-climatic database at a finer spatial resolution than was available before, to make projections regarding the likelihood and severity of hydro-climatic hazards that may occur in the Orange River Catchment. The impacts of climate change on hydro-climatic hazards, viz. design rainfalls, design floods, droughts and sediment yields are investigated, with the results including a quantitative uncertainty analysis, by way of an index of concurrence from multiple GCM projections, for each of the respective analyses. A new methodology for the calculation of short duration (< 24 hour) design rainfalls from daily GCM rainfall projections is developed in this study. The methodology utilises an index storm approach and is based on L-moments, allowing for short duration design rainfalls to be estimated at any location in South Africa for which daily GCM rainfall projections exist. The results from the five GCMs used in this study indicate the following possible impacts of climate change on hydro-climatic hazards in the Orange River Catchment: · Design rainfalls of both short and long duration are, by and large, projected to increase by the intermediate future period represented by 2046 - 2065, and even more so by the more distant future period 2081 - 2100. · Design floods are, by and large, projected to increase into the intermediate future, and even more into the more distant future; with these increases being larger than those projected for design rainfalls. · Both meteorological and hydrological droughts are projected to decrease, both in terms of magnitude and frequency, by the period 2046 - 2065, with further decreases projected for the period 2081 - 2100. Where increases in meteorological and hydrological droughts are projected to occur, these are most likely to be in the western, drier regions of the catchment. · Annual sediment yields, as well as their year-to-year variability, are projected to increase by the period 2046 - 2065, and even more so by the period 2081 - 2100. These increases are most likely to occur in the higher rainfall, and especially in the steeper, regions in the east of the catchment. Additionally, with respect to the above-mentioned hydro-climatic hazards, it was found that: · The statistic chosen to describe inter-annual variability of hydro-climatic variables may create different perceptions of the projected future hydroclimatic environment and, hence, whether or not the water manager would decide whether adaptive action is necessary to manage future variability. · There is greater uncertainty amongst the GCMs used in this study when estimating design events (rainfall and streamflow) for shorter durations and longer return periods, indicating that GCMs may still be failing to simulate individual extreme events. · The spatial distribution of projected changes in meteorological and hydrological droughts are different, owing to the complexities introduced by the hydrological system · Many areas may be exposed to increases in hydrological hazards (i.e. hydrological drought, floods and/or sediment yields) because, where one extreme is projected to decrease, one of the others is often projected to increase. The thesis is concluded with recommendations for future research in the climate change and hydrological fields, based on the experiences gained in undertaking this study. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.

Page generated in 0.1051 seconds