• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrologic simulation of pinyon-juniper woodlands in Arizona

Mattern, David Ellis, 1957- January 1989 (has links)
A physically-based, user friendly, hydrologic computer simulation model was developed for pinyon-juniper woodland watersheds. The data requirements are minimum, requiring vegetation conditions, basic soil survey information, and daily values for precipitation and temperature. The model predicts runoff from cleared and uncleared watersheds by simulating hydrologic processes on a daily basis. The model was tested with data from small pinyon-juniper watersheds in central Arizona. A crack-forming vertisol was the dominant soil type, and a special feature for addressing its effects on runoff was included. No significant difference between predicted and observed annual runoff was found at the ninety-five percent confidence level.
2

The hydrological effects of fire in South African catchments.

Scott, David Findlay. January 1994 (has links)
Stream-flow and storm-flow in four small catchments were analysed by the paired catchment method for a response to fire. Two of the catchments were vegetated with over-mature fynbos (the indigenous scrub vegetation of the south-western Cape Province, South Africa), one was afforested to Pinus radiata and the fourth to Eucalyptus fastigata. One of the fynbos catchments was burned in a prescribed fire in the late dry season. The other catchments burned in wildfires. Neither of the fynbos catchments showed a change in storm-flows. Annual total flow increases of around 16% were in line with predictions, being related to the reductions in transpiration and interception. The manner of stream-flow and storm-flow generation appeared to have remained unaltered despite the fire. The two timber plantation catchments experienced large and significant increases in stormflow and sediment yields, while total flow increased by 12% in the pine catchment and decreased marginally in the eucalypt catchment. After fire, storm hydrographs were higher and steeper though their duration was little changed. These fire effects are considered to be due to changes in storm-flow generation consistent with an increased delivery of overland flow to the stream channel. This was caused, in part, by reduced infiltration resulting from water repellency in the soils of the burned catchments. The inherent wettability of a wide range of soil types and textures from beneath timber plantations and other vegetation types over a broad geographic distribution in South Africa was measured by four methods. Soils with high repellency ratings, unrelated to fire, are common and are most likely to occur beneath plantations of Eucalyptus and Acacia spp. and indigenous forest. Water repellent soils played a role, at two of the three locations, in the generation of overland flow from small plots exposed to simulated rainfall. However, the inherent repellency of the dry soils was extreme, such that fire-induced water repellency was not a factor in the response of the plots. The important role of fire in this experiment was in burning-off of repellency in the surface layer of the soil and in removing ground cover. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1994.

Page generated in 0.0945 seconds