• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anaerobic Digestion Kinetics of Batch Methanogenic and Electrogenic Systems

January 2020 (has links)
abstract: Eighty-two percent of the United States population reside in urban areas. The centralized treatment of the municipal wastewater produced by this population is a huge energy expenditure, up to three percent of the entire energy budget of the country. A portion of this energy is able to be recovered through the process of anaerobic sludge digestion. Typically, this technology converts the solids separated and generated during the wastewater treatment process into methane, a combustible gas that may be burned to generate electricity. Designing and optimizing anaerobic digestion systems requires the measurement of degradation rates for waste-specific kinetic parameters. In this work, I discuss the ways these kinetic parameters are typically measured. I recommend and demonstrate improvements to these commonly used measuring techniques. I provide experimental results of batch kinetic experiments exploring the effect of sludge pretreatment, a process designed to facilitate rapid breakdown of recalcitrant solids, on energy recovery rates. I explore the use of microbial electrochemical cells, an alternative energy recovery technology able to produce electricity directly from sludge digestion, as precise reporters of degradation kinetics. Finally, I examine a fundamental kinetic limitation of microbial electrochemical cells, acidification of the anode respiring biofilm, to improve their performance as kinetic sensors or energy recovery technologies. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020

Page generated in 0.0627 seconds