Spelling suggestions: "subject:"hydrophobic/hydrophilic"" "subject:"lydrophobic/hydrophilic""
1 |
Modification of microparticle surfaces by use of alkylpolyglycoside surfactantsColumbano, Angela January 2000 (has links)
No description available.
|
2 |
Application of Argon Plasma Technology to Hydrophobic and Hydrophilic Microdroplet Generation in PDMS Microfluidic DevicesGraham, Brennan P 01 March 2017 (has links)
Abstract Application of Argon Plasma Technology to Hydrophobic and Hydrophilic Microdroplet Generation in PDMS Microfluidic Devices Brennan Graham Microfluidics has gained popularity over the last decade due to the ability to replace many large, expensive laboratory processes with small handheld chips with a higher throughput due to the small channel dimensions [1]. Droplet microfluidics is the field of fluid manipulation that takes advantage of two immiscible fluids to create droplets from the geometry of the microchannels. This project includes the design of a microfluidic device that applies the results of an argon plasma surface treatment to polydimethylsiloxane (PDMS) to successfully produce both hydrophobic and hydrophilic surfaces to create oil in water (O/W) and water in oil (W/O) microdroplets. If an argon plasma surface treatment renders the surface of PDMS hydrophilic, then O/W microdroplets can be created and integrated into a larger microdroplet emulsion device. The major aims of this project include: (1) validating previously established Cal Poly lab protocols to produce W/O droplets in hydrophobic PDMS microdroplet generators (2) creating hydrophilic PDMS microdroplet generators (3) making oil in water droplets in hydrophilic PDMS microdroplet generators (4) designing a multilayer microfluidic device to transfer W/O droplets to a second hydrophilic PDMS microdroplet generator v W/O droplets were successfully created and transferred to a second hydrophilic PDMS device. The hydrophilic PDMS device also produced O/W droplets in separate testing from the multilayered microfluidic PDMS device. The ultimate purpose of this project is to create a multilayer microdroplet generator that produces water in oil in water (W/O/W) microdroplet emulsions through a stacked device design that can be used in diagnostic microdroplet applications. Thesis Supervisor: Dave Clague Title: Professor of Biomedical Engineering
|
3 |
Developing a Novel Ultrafine Coal Dewatering ProcessHuylo, Michael H. 13 January 2022 (has links)
Dewatering fine coal is needed in many applications but has remained a great challenge. The hydrophobic-hydrophilic separation (HHS) method is a powerful technology to address this problem. However, organic solvents in solvent-coal slurries produced during HHS must be recovered for the method to be economically viable. Here, the experimental studies of recovering solvents from pentane-coal and hexane-coal slurries by combining liquid-solid filtration and in-situ vaporization and removing the solvent by a carrier gas (i.e., drying) are reported. The filtration behaviors are studied under different solid mass loading and filtration pressure. It is shown that using pressure filtration driven by 20 psig nitrogen, over 95% of solvents by mass in the slurries can be recovered, and filtration cakes can be formed in 60 s. The drying behavior was studied using nitrogen and steam at different temperatures and pressures. It is shown that residual solvents in filtration cakes can be reduced below 1400 ppm within 10 s by 15 psig steam superheated to 150C, while other parameter combinations are far less effective in removing solvents. Physical processes involved in drying and the structure of solvent-laden filtration cakes are analyzed in light of these results. / Master of Science / Coal particles below a certain size are discarded to waste tailing ponds as there is no economically viable method for processing them. However, a new process called hydrophobic-hydrophilic separation offers a solution to this problem. A hydrophobic solvent is used to displace water from a coal-water slurry, and it is then easier and cheaper to filter and dry this new coal-solvent slurry. In this work experimental studies of recovering solvents from pentane-coal and hexane-coal slurries by combining filtration and drying are reported. The filtration behaviors are studied under different solid mass loading and filtration pressures. It is shown that using pressure filtration driven by 20 psig nitrogen, over 95% of solvents by mass in the slurry can be recovered, and filtration cakes can be formed in 60 s. The drying behavior was studied using nitrogen and steam at different temperatures and pressures to evaporate any remaining solvents. It is shown that the remaining solvents in filtration cakes can be reduced below 1400 ppm within 10 s by using 15 psig steam superheated to 150C as a drying medium, while other parameter combinations are far less effective in removing solvents. Physical processes involved in drying and the structure of solvent-laden filtration cakes are analyzed in light of these results.
|
4 |
Synthesis and Characterization of Hydrophobic-Hydrophilic Multiblock Copolymers for Proton Exchange Membrane and Segmented Copolymer Precursors for Reverse Osmosis ApplicationsMehta, Ishan 03 July 2014 (has links)
High performance engineering materials, poly(arylene ether)s, having very good mechanical properties, excellent oxidative and hydrolytic stability are promising candidates for alternative materials used in the field of Proton Exchange Membrane Fuel Cells (PEMFCs) and Reverse Osmosis (RO) applications. In particular, wholly aromatic sulfonated poly(arylene ether sulfone)s are of considerable interest in the field of PEMFCs and RO, due to their affordability, high Tg, and the ease of sulfonation.
Proton exchange membrane fuels cells (PEMFCs) are one of the primary alternate source of energy. A Proton exchange membrane (PEM) is one of the key component in a PEMFC and it needs to have good proton conductivity under partially humidified conditions. One of the strategies to increase proton conductivity under partially RH conditions is to synthesize hydrophobic-hydrophilic multiblock copolymers with high Ion exchange capacity (IEC) values to ensure sufficient ion channel size.
In this thesis two multiblock systems were synthesized incorporating trisulfonated hydrophilic oligomers and were characterized in the first two chapters of the thesis. The first multiblock system incorporated a non-fluorinated biphenol-based hydrophobic block. The second study was focused on synthesizing a fluorinated benzonitrile-based hydrophobic block. A fluorinated monomer was incorporated with the aim to improve phase separation which might lead to increased performance under partially humidified conditions.
The third study featured synthesis and characterization of a novel hydroquinone-based random copolymer system precursor, which after post-sulfonation, shall form mono-sulfonated polysulfone materials with potential applications in reverse osmosis. The ratio of the amount of hydroquinone incorporated in the copolymer were varied during the synthesis of the precursor to facilitate control over the post-sulfonation process. The simple and low cost process of post-sulfonating the random copolymer enables the precursor to be a promising material to be used in the reverse osmosis application. / Master of Science
|
5 |
Advancement of the Hydrophobic-Hydrophilic Separation ProcessJones, Alan Wayne III 19 April 2019 (has links)
Froth flotation has long been regarded as the best available technology for ultrafine particles separation. However, froth flotation has extreme deficiencies for recovering ultrafine particles that are less than 30-50 μm in size for coal and 10-20 μm for minerals. Furthermore, dewatering of flotation products is difficult and costly using currently available technologies. Due to these problems, coal and mineral fines are either lost to tailings streams inadvertently or discarded purposely prior to flotation. In light of this, researchers at Virginia Tech have developed a process called hydrophobic-hydrophilic separation (HHS), which is based originally on a concept known as dewatering by displacement (DbD). The process uses non-polar solvents (usually short-chain alkanes) to selectively displace water from particle surfaces and to agglomerate fine coal particles. The resulting agglomerates are subsequently broken (or destabilized) mechanically in the next stage of the process, whereby hydrophobic particles are dispersed in the oil phase and water droplets entrapped within the agglomerates coalesce and exit by gravity along with the hydrophilic particles dispersed in them. In the present work, further laboratory-scale tests have been conducted on various coal samples with the objective of commercial deployment of the HHS process. Test work has also been conducted to explore the possibility of using this process for the recovery of ultrafine minerals such as copper and rare earth minerals. Ultrafine streams produced less than 10% ash and moisture consistently, while coarse coal feed had no observable degradation to the HHS process. Middling coal samples were upgraded to high-value coal products when micronized by grinding. All coal samples performed better with the HHS process than with flotation in terms of separation efficiency. High-grade rare earth mineral concentrates were produced with the HHS process ranging from 600-2100 ppm of total rare earth elements, depending on the method and reagent. Additionally, the HHS process produced copper concentrates assaying greater than 30% Cu for both artificial and real feed samples, as well as, between 10-20% Cu for waste samples, which all performed better than flotation. / Master of Science / Froth flotation has long been regarded as the best available technology for separating fine particles. Due to limitations in particle size with froth flotation, and high downstream dewatering costs, a new process has been developed called the hydrophobic-hydrophilic separation (HHS) process. This process was originally based on a concept known as dewatering by displacement (DbD) which was developed by researchers at Virginia Tech in 1995. The process uses hydrocarbon oils, like pentane or heptane, to selectively collect hydrophobic particles, such as coal, for which it was originally developed. In coal preparation plants, a common practice is to purposefully discard the ultrafine stream that flotation cannot recover and has an increased dewatering cost. The HHS process can effectively recovery this waste stream and produce highgrade salable product, with significantly reduced cost of dewatering. In the work presented, laboratory-scale tests have been conducted on various coal samples with the objective of commercial deployment of the HHS process. In this respect, several varying plant streams have been tested apart from the traditional discard stream. Additionally, test work has expanded into mineral commodities such as copper and rare earth minerals. In this work, salable high-value coal products were achievable with the HHS process. Ultrafine streams consistently produced less than 10% ash and moisture. Coarse coal feeds had no observable degradation to the HHS process and were able to produce single digit ash and moisture values. Middling coal samples were upgraded to high-value coal products when micronized by grinding. All coal samples performed better with the HHS process than with flotation in terms of separation efficiency. High-grade rare earth mineral concentrates were produced with the HHS process ranging from 600- 2100 ppm of total rare earth elements depending on the method and reagent. Additionally, the HHS process produced copper concentrates assaying greater than 30% Cu for an artificial and feed samples, as well as, between 10-20% Cu for waste samples, which all performed better than flotation.
|
6 |
Development and Testing of a Mobile Pilot Plant for the Advancement and Scale-up of the Hydrophobic-Hydrophilic Separation ProcessSechrist, Chad Michael 03 June 2024 (has links)
Fine particle separation is a grand challenge in the mining and mineral processing industry. The industry standard process, froth flotation, is extremely robust and adaptable; however, it is inefficient for particles less than 20 microns. Owing to this limitation, some mining sectors, such as coal, opt to discard the ultrafine particles to waste impoundments as the costs to recover and dewater these materials are prohibitive. The Hydrophilic Hydrophobic Process (HHS) is one alternative to flotation that uses a recyclable solvent, rather than air bubbles, to selectively recover fine hydrophobic particles. Prior laboratory, proof-of-concept, and demonstration-scale testing has shown that the HHS process is extremely efficient, having no effective size limitation. The purpose of this research was to continue the development and improvement of the HHS process, through the design, construction, and testing of a mobile pilot plant. The pilot plant would in turn be used to demonstrate the robustness of the HHS process through a systemic study of multiple coal sources and ranks. In addition, the pilot plant would serve as a testbed for inquiry-based process intensification, the development and evaluation of design criteria for the various unit operation.
Through the course of this research, a 50 lb./hr. (product rate) pilot plant was constructed and commissioned. Initial investigations focused on the shakedown and design of key unit operations, including the agglomeration and de-emulsification (i.e. Morganizing) steps. Studies showed that the initial design of these units, namely pump induced mixing in agglomeration and packed bed emulsification in the Morganizer, were not adequate to meet production demands, and as such, these stages were redesigned after appropriate fundamental evaluations. After implementing the design changes, the pilot plant was successfully operated over a 7-month period, routinely producing bituminous products with less than6% ash and less than 10% moisture as well as anthracite products with less than 3% ash and less than 4% moisture.
This study also evaluated a new approach to de-emulsification using a jig based Morganizer in place of the standard oscillating column Morganizer. The jig utilizes a pulsing mechanism to move liquid to break up agglomerates versus the mechanical disk stack. Preliminary results showed that the jig Morganizer was comparable to the oscillating unit at more than half the size. This new design provides a pathway for reduced cost, footprint, and improved scalability.
Lastly, this study evaluated both the HHS process and dual-scan X-ray based particle sorting as means of increasing the REE content of coal-based materials. Data from a pilot-scale x-ray sorter showed the unit was capable of preconcentrating REEs to over 300 ppm, while data from the HHS similarly showed the process was capable of REE recoveries of 85-90% and of preconcentrating REEs above 300 ppm. Altogether, these results indicate That both of these technologies are capable of efficiently and cost effectively preconcentrate REEs from wastes streams at operating coal preparation plants. / Doctor of Philosophy / The mining sector has traditionally been a large producer of waste, with the vast majority of this waste being ultrafine particles that are unable to be recovered using conventional technologies. These particles are often disposed of in large surface impoundments, which are an environmental and social liability in many mining districts. This study has evaluated a novel method of fine particle separation, the hydrophobic-hydrophilic separation (HHS) process. The HHS process uses a recyclable oil to selectively agglomerate fine particles, which are subsequently dispersed and recovered. The oil is then filtered and recycled within the process creating an approach that is both efficient and environmentally friendly. In this study, a mobile pilot HHS plant was constructed and tested, with the results showing that the HHS can effectively recover fine carbon from waste coals, thus turning an environmental liability into a potential value stream for high-end applications. In addition, the study showed that the process can be further improved to reduce costs while improving overall efficiency. Overall, this study has provided the data needed to further commercialize the HHS process. If widely deployed, the HHS process has the potential to both reduce the current amount of waste fines being generated and reclaim the existing impoundments.
|
7 |
Processing of Low Rank Coal and Ultrafine Particle Processing by Hydrophobic-Hydrophilic Separation (HHS)Jain, Riddhika 05 September 2013 (has links)
This thesis pertains to the processing of ultra-fine mineral particles and low rank coal using the hydrophobic--hydrophilic separation (HHS) method. Several explorative experimental tests have been carried out to study the effect of the various physical and chemical parameters on the HHS process.
In this study, the HHS process has been employed to upgrade a chalcopyrite ore. A systematic experimental study on the effects of various physical and chemical parameters such as particle size, reagent dosage and reaction time on the separation efficiencies have been performed. For this, a copper rougher concentrate (assaying 15.9 %Cu) was wet ground and treated with a reagent to selectively hydrophobize the copper-bearing mineral (chalcopyrite), leaving the siliceous gangue minerals hydrophilic. The slurry was subjected to a high-shear agitation to selectively agglomerate the chalcopyrite and to leave the siliceous gangue dispersed in aqueous phase. The agglomerates were then separated from dispersed gangue minerals by screening and the agglomerates dispersed in a hydrophobic liquid (n-pentane) to liberate the water trapped in the agglomerates. The chalcopyrite dispersed in the hydrophobic liquid was separated from the medium to obtain a concentrate substantially free of gangue minerals and moisture. The copper recoveries were substantially higher than those obtained by flotation. The HHS process was also tested on ultrafine mono-sized silica beads. The results were superior to those obtained by flotation, particularly with ultrafine particles.
The HHS process has also been tested successfully for upgrading subbituminous coals. Low-rank coals are not as hydrophobic as high-rank coals such as bituminous and anthracite coals. In the present work, a low-rank coal from Wyoming was hydrophobized with appropriate reagents and subjected to the HHS in a similar manner as described for processing copper. The results showed that the HHS process reduced the moisture substantially and increased the heating value up to 50% without heating the coal. Laboratory-scale tests conducted under different conditions, e.g., particle size, reagent type, reaction time, and pretreatments, showed promising results. Implementation for the HHS process for upgrading low-rank coals should help reduce CO2 emissions by improving combustion efficiencies. / Master of Science
|
8 |
Synthesis and Characterization of Hydrophobic-Hydrophilic Multiblock Copolymers for Proton Exchange Membrane ApplicationsChen, Yu 17 October 2011 (has links)
Proton exchange membrane fuel cells (PEMFCs) have been extensively studied as clean, sustainable and efficient power sources for electric vehicles, and portable and residential power sources. As one of the key components in PEMFC system, proton exchange membranes (PEMs) act as the electrolyte that transfers protons from the anode to the cathode. The state-of-art commercial PEM materials are typically based on perfluorinated sulfonic acid containing ionomers (PFSAs), represented by DuPont's Nafion®. Despite their good chemical stability and proton conductivity at high relative humidity (RH) and low temperature, several major drawbacks have been observed on PFSAs, such as high cost, high fuel permeability, insufficient thermo-mechanical properties above 80°C, and low proton conductivity at low RH levels. Therefore the challenge lies in developing alternative PEMs which feature associated ionic domains at low hydration levels. Nanophase separated hydrophilic-hydrophobic block copolymer ionomers are believed to be desirable for this purpose Three series of hydrophobic/hydrophillic, partially fluorinated/sulfonated multiblock copolymers were synthesized and characterized in this thesis. The hydrophilic blocks were based upon the nucleophilic step polymerization of 3, 3′-disulfonated, 4, 4′-dichlorodiphenyl sulfone (SDCDPS) with an excess 4, 4′-biphenol (BP) to afford phenoxide endgroups. The partially fluorinated hydrophobic blocks were largely based on 4, 4′-hexafluoroisopropylidenediphenol (6F-BPA) and various difluoro monomers (excess). These copolymers were obtained through moderate temperature (~130-150°C) coupling reactions, which minimize the ether-ether interchanges between hydrophobic and hydrophilic telechelic oligomers via a nucleophilic aromatic substitution mechanism. The copolymers were obtained in high molecular weights and were solvent cast into tough membranes, which had nanophase separated hydrophilic and hydrophobic regions. The performance and structure-property relationships of these materials were studied and compared to random copolymer systems. NMR results supported that the multiblock sequence had been achieved. They displayed superior proton conductivity, due to ionic, proton conducting channels formed through the self-assembly of the sulfonated blocks. The nano-phase separated morphologies of the copolymer membranes were studied and confirmed by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Through control of a variety of parameters, including ion exchange capacity and sequence lengths, performances as high, or even higher than those of the state-of-the-art PEM, Nafion®, were achieved.
Another series of semi-crystalline hydrophobic poly(ether ether ketone)-hydrophilic sulfonated poly(arylene ether sulfone) (PEEK-BPSH100) multiblock copolymers was first synthesized and characterized. However due to their semi-crystalline structure, PEEK blocks are insoluble in most organic solvents at relatively low reaction temperatures, which prevents the coupling reaction between PEEK and BPS100. In order to facilitate the synthesis and processing, removable bulky ketimine was introduced to synthesize amorphous pre-oligomers poly(ether ether ketimine) (PEEKt). The synthetic procedure first involves the synthesis of hydrophobic poly(ether ether ketimine)-hydrophilic sulfonated poly(arylene ether sulfone) (PEEKt-BPS100) multiblock pre-copolymers via coupling reactions between phenoxide terminated hydrophilic BPS100 and fluorine terminated hydrophobic PEEKt blocks. The membranes cast from PEEKt-BPS100 were boiled in 0.5M sulfuric acid water solution to hydrolyze the amorphous PEEKt blocks to semi-crystalline PEEK blocks and acidify BPS100 blocks to BPSH100 blocks simultaneously. FT-IR spectra clearly showed the successful hydrolysis and acidification. The proton conductivity, water uptake and other membrane properties of the acidified semi-crystalline PEEK-BPSH100 membranes were then evaluated and compared with those of the state-of-the-art PEM, Nafion®. / Ph. D.
|
9 |
Films polymères minces à base de méthacrylate de glycidyle pour l'élaboration d'interfaces immunoréceptrices : étude par résonance de plasmon de surface / Glycidyl methacrylate based thin polymer films for the elaboration of immunoreceptors interfaces : resonance plasmon surface studyDiop, Dior 17 December 2010 (has links)
Dans ce travail, nous avons cherché à mettre en évidence l'influence de la méthode de préparation de films minces de polymère pour la biofonctionnalisation de surfaces planes. Dans un premier temps, un polymère réactif, le poly(méthacrylate de glycidyle) p(GMA) a été choisi et sa capacité de fixation vis-à-vis d'une biomolécule modèle l'albumine de sérum bovin a été étudiée. Deux stratégies principales de préparation du film polymère ont été utilisées : la technique du grafting onto et celle du grafting from avec deux voies de synthèse : la polymérisation radicalaire classique (PRC) avec l'amorceur en solution et la polymérisation initiée à partir de la surface avec un amorceur photochimique. Il a été montré que la méthode du « grafting from » permettait l'obtention de films d'épaisseur plus élevées que la technique du « grafting onto » avec une meilleure capacité de fixation de biomolécules de BSA. Ces films de p(GMA) se sont révélés relativement hydrophobes, ce qui nous incités à analyser l'influence de la balance hydrophobe/hydrophile des interfaces sur leurs propriétés, dans un second temps. Par la préparation de films copolymères poly(GMA-co-acrylamide) et poly(GMA-co-méthacrylate de glycérol) et la modification des films de poly(GMA) par de l'éthanolamine, l'influence de l'hydrophilie du film sur la capacité de fixation en molécules de BSA et l'activité de reconnaissance moléculaire de celles-ci ont été évaluées. Il a été démontré que par un choix judicieux de la méthode d'hydrophilisation du film polymère, il est possible de réduire considérablement l'adsorption non-spécifique de biomolécules d'où l'obtention de films polymères bioinertes. De plus, les résultats préliminaires ont montré qu'il est possible d'améliorer sensiblement la capacité de reconnaissance moléculaire entre la BSA et son anticorps l'anti-BSA / It is now well accepted that polymeric spacers permit to attach proteins to surfaces efficiently as they carry several binding sites. Moreover, direct attachment of proteins to surfaces might result in the decrease of bioactivity which is critical in the case of the development of biosensors. In this context, we modified gold substrates by polymer grafts via the so-called (i) grafting onto and (ii) grafting from strategies. In (i) preformed polymer chains were attached to the surface, whilst in (ii) surface-confined photopolymerization was performed on either acrylic monomer- or initiator-functionalized gold substrates. The polymer grafts were further biofunctionalized by covalent immobilization of an active protein (bovine serum albumin, BSA). Given the protein-polymer and polymer-gold covalent bonds, the gold/polymer/BSA hybrids permitted to design robust optical biosensors. The modified gold substrates were characterized in terms of chemical composition (X-ray photoelectron spectroscopy), hydrophobicity (contact angle measurements), and polymer coating thickness (surface plasmon resonance, SPR). SPR was also used to monitor in real time the interaction between the grafted antigen to the specific antibody (aBSA). Using unique reactive monomer, glycidyl methacrylate (GMA) in the present case, the implementation of these three methods is assumed to provide polymer films of similar chemical composition but varied interfacial chains conformation. In this respect, influence of polymer chains mobility on the performance of the immunosensing reaction was evaluated. In a further step, hydrophobic/hydrophilic balance of the polymer films was modulated through copolymerization of GMA with acrylamide, and with glycerol methacrylate. It was demonstrated that control over the surface chemical composition of the polymer grafts allows preparing bioinert films, i.e. resistant to non specific adsorption, with enhanced biospecific activity
|
10 |
Etude des propriétés d'adsorption d'hydrocarbures par des polymères de coordination en milieu humide / Study of hydrocarbon adsorption properties by coordination polymers in a humid environmentBoudjema, Lotfi 05 December 2018 (has links)
Ce travail de thèse a porté sur l’étude des propriétés d’adsorption et de séparation en milieu humide par des polymères de coordination poreux. Nous avons utilisé les techniques de volumétrie d’adsorption, de séparation par chromatographie en phase gaz, de spectroscopie de fluorescence ainsi que et de la modélisation Monte Carlo afin de comprendre les mécanismes qui gouvernent l’adsorption de ces matériaux. Les molécules adsorbables étudiées sont l’eau et des vapeurs d’hydrocarbures linéaires (pentane et n-hexane), cycliques (cyclohexane et cyclohexène) et polycycliques (anthracène). Les adsorbants étudiés sont les Analogues de Bleu de Prusse (ABP) ainsi que deux matériaux organométalliques poreux de référence, le ZIF8 et le CuBTC. Parmi les résultats principaux apportés par ce travail, nous avons montré que les Analogues de Bleu de Prusse ont une stabilité hydrothermale remarquable leur conférant des propriétés d’adsorption en milieu humide très prometteuses. Parmi les ABP étudiés, le Co[CoIII(CN)6]0.66 ⊡0.33 .5.2H2O a montré des propriétés d’adsorption et de séparation très supérieures à celles d’autres ABPs. Par exemple, il a été possible de moduler sa balance hydrophobe/hydrophile par le contrôle de la coordination de l’eau sur le centre métallique insaturé, tout en préservant son caractère lipophile. Nous avons aussi montré que cet analogue de bleu de Prusse est capable de séparer des mélanges d’hydrocarbures secs ou très humides de façon répétée. Sur un aspect plus fondamental, nous avons montré que le confinement d’anthracène par le ZIF-8, qui est un composé organométallique poreux possédant des cavités de taille ajustée à celle du fluorophore, pouvait induire une extinction complète de certaines bandes d’absorption de celui-ci. / This PhD thesis is focused on the study of wet adsorption and separation properties by porous coordination polymers. We used adsorption volumetry, gas chromatography separation techniques, fluorescence spectroscopy techniques and Monte Carlo modeling to understand the mechanisms governing the adsorption of these materials. The adsorbable molecules studied are water and hydrocarbon vapors linear (pentane and n-hexane), cyclic (cyclohexane and cyclohexene) and polycyclic (anthracene). The adsorbents studied are the Prussian Blue Analogues (ABP) as well as two reference porous organometallic materials, ZIF8 and CuBTC. Among the main results provided by this work, we have shown that Prussian Blue Analogues have remarkable hydrothermal stability conferring them very promising wet adsorption properties. Among the ABPs studied, Co [CoIII (CN)6] 0.66 ⊡0.33 .5.2H2O showed adsorption and separation properties far superior to those of other ABPs. For example, it has been possible to modulate its hydrophobic / hydrophilic balance by controlling the coordination of water on the unsaturated metal center, while preserving its lipophilic character. We have also shown that this Prussian blue analogue is capable of separating mixtures of dry or very wet hydrocarbons repeatedly. On a more fundamental aspect, we have shown that the confinement of anthracene by ZIF-8, which is a porous organometallic compound with cavities of size adjusted to that of the fluorophore, could induce a complete extinction of certain absorption bands of this one.
|
Page generated in 0.0633 seconds