Spelling suggestions: "subject:"sulfonated poly(arylene other sulfone)""
1 |
Synthesis and Characterization of Hydrophobic-Hydrophilic Segmented and Multiblock Copolymers for Proton Exchange Membrane and Reverse Osmosis ApplicationsVanHouten, Rachael A. 23 April 2010 (has links)
This thesis research focused on the synthesis and characterization of disulfonated poly(arylene ether sulfone) hydrophilic-hydrophobic segmented and multiblock copolymers for application as proton exchange membranes (PEMs) in fuel cells or as reverse osmosis (RO) membranes for water desalination. The first objective was to demonstrate that synthesizing blocky copolymers using a one oligomer, two monomer segmented copolymerization afforded copolymers with similar properties to those which used a previous approach of coupling two preformed oligomers. A 4,4′-biphenol based hydrophilic block of disulfonated poly(arylene ether sulfone) oligomer of controlled number average molecular weight (Mn) with phenoxide reactive end groups was first synthesized and isolated. It was then reacted with a calculated amount of hydrophobic monomers, forming that block in-situ. Copolymer and membrane properties, such as intrinsic viscosity, tensile strength, water uptake, and proton conductivity, were consistent with those of multiblock copolymers synthesized via the oligomer-oligomer approach.
The segmented polymerization technique was then used to synthesize a variety of other copolymers for PEM applications. The well known bisphenol phenolphthalein was explored as a comonomer for either the hydrophilic and hydrophobic blocks of the copolymer. Membrane properties were explored as a function of block length for both series of copolymers. Both series showed that as block length increases, proton conductivity increases across the entire range of relative humidity (30-100%), as does, water uptake. This was consistent with earlier research which showed that the water self-diffusion coefficient scaled with block length. Copolymers produced with phenolphthalein had higher tensile strength, but lower ultimate elongation than the 4,4′-biphenol based copolymers.
Multiblock copolymers were also synthesized and characterized to assess their feasibility as RO membranes. A new series of multiblock copolymers was synthesized by coupling hydrophilic disulfonated poly(arylene ether sulfone) (BisAS100) oligomer with hydrophobic unsulfonated poly(arylene ether sulfone) (BisAS0) oligomer. Both oligomers were derived using 4,´-isopropylidenediphenol (Bis-A) as the bisphenol. Phenoxide-terminated BisAS100 was end-capped with decafluorobiphenyl and reacted at relatively low temperatures (~ 100 oC) with phenoxide-terminated BisAS0. Basic properties were characterized as a function of block length. The initial membrane characterization suggested these copolymers may be suitable candidates for reverse osmosis applications, and water and salt permeability testing should be conducted to determine desalination properties. The latter measurements are being conducted at the University of Texas, Austin and will be reported separately. / Ph. D.
|
2 |
Synthesis and Characterization of Hydrophobic-Hydrophilic Multiblock Copolymers for Proton Exchange Membrane ApplicationsChen, Yu 17 October 2011 (has links)
Proton exchange membrane fuel cells (PEMFCs) have been extensively studied as clean, sustainable and efficient power sources for electric vehicles, and portable and residential power sources. As one of the key components in PEMFC system, proton exchange membranes (PEMs) act as the electrolyte that transfers protons from the anode to the cathode. The state-of-art commercial PEM materials are typically based on perfluorinated sulfonic acid containing ionomers (PFSAs), represented by DuPont's Nafion®. Despite their good chemical stability and proton conductivity at high relative humidity (RH) and low temperature, several major drawbacks have been observed on PFSAs, such as high cost, high fuel permeability, insufficient thermo-mechanical properties above 80°C, and low proton conductivity at low RH levels. Therefore the challenge lies in developing alternative PEMs which feature associated ionic domains at low hydration levels. Nanophase separated hydrophilic-hydrophobic block copolymer ionomers are believed to be desirable for this purpose Three series of hydrophobic/hydrophillic, partially fluorinated/sulfonated multiblock copolymers were synthesized and characterized in this thesis. The hydrophilic blocks were based upon the nucleophilic step polymerization of 3, 3′-disulfonated, 4, 4′-dichlorodiphenyl sulfone (SDCDPS) with an excess 4, 4′-biphenol (BP) to afford phenoxide endgroups. The partially fluorinated hydrophobic blocks were largely based on 4, 4′-hexafluoroisopropylidenediphenol (6F-BPA) and various difluoro monomers (excess). These copolymers were obtained through moderate temperature (~130-150°C) coupling reactions, which minimize the ether-ether interchanges between hydrophobic and hydrophilic telechelic oligomers via a nucleophilic aromatic substitution mechanism. The copolymers were obtained in high molecular weights and were solvent cast into tough membranes, which had nanophase separated hydrophilic and hydrophobic regions. The performance and structure-property relationships of these materials were studied and compared to random copolymer systems. NMR results supported that the multiblock sequence had been achieved. They displayed superior proton conductivity, due to ionic, proton conducting channels formed through the self-assembly of the sulfonated blocks. The nano-phase separated morphologies of the copolymer membranes were studied and confirmed by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Through control of a variety of parameters, including ion exchange capacity and sequence lengths, performances as high, or even higher than those of the state-of-the-art PEM, Nafion®, were achieved.
Another series of semi-crystalline hydrophobic poly(ether ether ketone)-hydrophilic sulfonated poly(arylene ether sulfone) (PEEK-BPSH100) multiblock copolymers was first synthesized and characterized. However due to their semi-crystalline structure, PEEK blocks are insoluble in most organic solvents at relatively low reaction temperatures, which prevents the coupling reaction between PEEK and BPS100. In order to facilitate the synthesis and processing, removable bulky ketimine was introduced to synthesize amorphous pre-oligomers poly(ether ether ketimine) (PEEKt). The synthetic procedure first involves the synthesis of hydrophobic poly(ether ether ketimine)-hydrophilic sulfonated poly(arylene ether sulfone) (PEEKt-BPS100) multiblock pre-copolymers via coupling reactions between phenoxide terminated hydrophilic BPS100 and fluorine terminated hydrophobic PEEKt blocks. The membranes cast from PEEKt-BPS100 were boiled in 0.5M sulfuric acid water solution to hydrolyze the amorphous PEEKt blocks to semi-crystalline PEEK blocks and acidify BPS100 blocks to BPSH100 blocks simultaneously. FT-IR spectra clearly showed the successful hydrolysis and acidification. The proton conductivity, water uptake and other membrane properties of the acidified semi-crystalline PEEK-BPSH100 membranes were then evaluated and compared with those of the state-of-the-art PEM, Nafion®. / Ph. D.
|
Page generated in 0.1076 seconds