• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Social perspectives on hydroponics production in the Nelson Mandela Metro Municipality

Qengwa, Viwe Keith January 2015 (has links)
Despite millions of Rands being disbursed to the three hydroponic projects in the Nelson Mandela Bay Municipality by Provincial Departments, Development Agencies and NGOs, relatively little is known about the impact of these projects. There is too little evaluative research on the effectiveness of such development projects. Questions arose as to what made these projects fail and what was required for sustainability over their intended life-spans. Evaluations assess a project’s ability to be sustained by examining different aspects of sustainability, including technical soundness, skills transfer, political effect, economic viability, and institutional, organizational and management effectiveness. This study has revealed that hydroponic production is a very challenging business that requires close monitoring, intense technical knowledge, and continuous learning. Moreover it is very costly, while profit generation is quick and the market central for the sustainability of this kind of project. The findings of this study also revealed that no proper feasibility study was conducted including selection of beneficiaries, no monitoring by funders and donors, no transfer of skills and no continuous empowerment of project members. Project members also indicated that they are aware of the causes of their project closures and that they are willing to participate in hydroponics production initiatives again because of the potential that these projects have.
2

Wireless ICT monitoring for hydroponic agriculture

Ndame, Loic Andre Stephane January 2015 (has links)
It is becoming increasingly evident that agriculture is playing a pivotal role in the socio-economic development of South Africa. The agricultural sector is important because it contributes approximately 2% to the gross domestic product of the country. However, many factors impact on the sustainability of traditional agriculture in South Africa. Unpredictable climatic conditions, land degradation and a lack of information and awareness of innovative farming solutions are among the factors plaguing the South African agricultural landscape. Various farming techniques have been looked at in order to mitigate these challenges. Among these interventions are the introduction of organic agriculture, greenhouse agriculture and hydroponic agriculture, which is the focus area of this study. Hydroponic agriculture is a method of precision agriculture where plants are grown in a mineral nutrient solution instead labour- intensive activity that requires an incessant monitoring of the farm environment in order to ensure a successful harvest. Hydroponic agriculture, however, presents a number of challenges that can be mitigated by leveraging the recent mobile Information and Communication Technologies (ICTs) breakthroughs. This dissertation reports on the development of a wireless ICT monitoring application for hydroponic agriculture: HydroWatcher mobile app. HydroWatcher is a complex system that is composed of several interlacing parts and this study will be focusing on the development of the mobile app, the front-end of the system. This focus is motivated by the fact that in such systems the front-end, being the part that the users interact with, is critical for the acceptance of the system. However, in order to design and develop any part of HydroWatcher, it is crucial to understand the context of hydroponic agriculture in South Africa. Therefore, complementary objectives of this study are to identify the critical factors that impact hydroponic agriculture as well as the challenges faced by hydroponic farmers in South Africa. Thus, it leads to the elicitation of the requirements for the design and development of HydroWatcher. This study followed a mixed methods approach, including interviews, observations, exploration of hydroponic farming, to collect the data, which will best enable the researcher to understand the activities relating to hydroponic agriculture. A qualitative content analysis was followed to analyse the data and to constitute the requirements for the system and later to assert their applicability to the mobile app. HydroWatcher proposes to couple recent advances in mobile technology development, like the Android platform, with the contemporary advances in electronics necessary for the creation of wireless sensor nodes, as well as Human Computer interaction guidelines tailored for developing countries, in order to boost the user experience.
3

Effect of nitrogen levels on yield and quality of leafy vegetables grown in a non-circulating hydroponic system.

Mahlangu, Rebecca Irene Sindisiwe. January 2014 (has links)
M. Tech. Agriculture / Leafy vegetables, Swiss chard (Beta vulgaris L. var. cicla), lettuce (Lactuca sativa L.) and mustard spinach (Brassica juncea), are widely grown in South Africa. These leafy vegetables are popular owing to their availability and nutritional properties. Optimisation of crop nutrition is essential to maximize yield and quality of vegetables. Therefore, a study was conducted to evaluate the effect of different levels of nitrogen application on growth and quality parameters of leafy vegetables when grown in a non-circulating hydroponic system. The objective of this study is two-fold: primarily, to determine the influence of nitrogen on growth, yield and overall quality of Swiss chard, lettuce and mustard spinach grown in a non-circulating hydroponic system, and secondly, to determine the effect of nitrogen applications on bioactive compounds and antioxidants, such as antioxidant scavenging activities, ascorbic acid, total phenolics and flavonoids.
4

Growth, yield and quality of hydroponically grown tomatoes as affected by different particle sizes of sawdust

Maatjie, Maboloke Abram 23 March 2016 (has links)
The tomato is one of the most important vegetable crops grown in the South African community. Most hydroponic tomato growers in South Africa are using sawdust as a growing medium due to its availability and affordability. However, there is little or no information on how particle sizes of sawdust influence tomato yield and quality. The aim of the study was to determine the effect of the particle size of sawdust on plant growth, yield and quality of tomato. Six treatments of different particle sizes of sawdust i.e. fine (F), medium (M), coarse (C) and 50:50 ratio of F: M, C: M, and C: F extracted from pine tree were used for the experiment. Treatments were arranged in a randomized complete block design with four replicates. The size of the sawdust particles did not have a significant effect on plant height, stem diameter, leaf length and width, shelf-life, marketable yield, total yield and unmarketable yield. A tendency to increase marketable and total yield was observed when tomato plants were grown at a 50:50 C: F ratio. Fruit and leaf mineral content were not affected by sawdust particle size. After completion of the experiment, air- filled porosity was significantly high on particle size C, M, and C: M while the water holding capacity was significantly high on F followed by M. The study showed that the suitable growth medium for production of tomatoes under the hydroponics system used was the CF particle substrate. Generally, the experimental crop performed better under the CF particle substrate in terms of growth parameters, and fruit quality, thus leading to the conclusion that the CF growth medium is ideal for hydroponically grown tomato under a non-environmentally controlled polytunne / Agriculture, Animal Health and Human Ecology / M. Sc. (Agriculture)
5

Growth, yield and quality of hydroponically grown tomatoes as affected by different particle sizes of sawdust

Maatjie, Maboloke Abram 23 March 2016 (has links)
The tomato is one of the most important vegetable crops grown in the South African community. Most hydroponic tomato growers in South Africa are using sawdust as a growing medium due to its availability and affordability. However, there is little or no information on how particle sizes of sawdust influence tomato yield and quality. The aim of the study was to determine the effect of the particle size of sawdust on plant growth, yield and quality of tomato. Six treatments of different particle sizes of sawdust i.e. fine (F), medium (M), coarse (C) and 50:50 ratio of F: M, C: M, and C: F extracted from pine tree were used for the experiment. Treatments were arranged in a randomized complete block design with four replicates. The size of the sawdust particles did not have a significant effect on plant height, stem diameter, leaf length and width, shelf-life, marketable yield, total yield and unmarketable yield. A tendency to increase marketable and total yield was observed when tomato plants were grown at a 50:50 C: F ratio. Fruit and leaf mineral content were not affected by sawdust particle size. After completion of the experiment, air- filled porosity was significantly high on particle size C, M, and C: M while the water holding capacity was significantly high on F followed by M. The study showed that the suitable growth medium for production of tomatoes under the hydroponics system used was the CF particle substrate. Generally, the experimental crop performed better under the CF particle substrate in terms of growth parameters, and fruit quality, thus leading to the conclusion that the CF growth medium is ideal for hydroponically grown tomato under a non-environmentally controlled polytunne / Agriculture, Animal Health and Human Ecology / M. Sc. (Agriculture)

Page generated in 0.0817 seconds