• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • Tagged with
  • 19
  • 19
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extraction of oil from algae for biofuel production by thermochemical liquefaction / Anro Barnard

Barnard, Anro January 2009 (has links)
The extraction of oil from microalgae was investigated. The study focused on the hydrothermal liquefaction of the microalgae Microcystis aeruginosa, Cyclotella meneghinia and Nitzschia pusilla. M. aeruginosa was collected from the Hartebeespoort dam, while C. meneghinia and N. pusilla were cultured in the laboratory. The experiments were conducted in a high pressure autoclave with an inert atmosphere. Sodium carbonate was studied as a potential catalyst. The hydrothermal liquefaction of M. aeruginosa, C. meneghinia and N. pusilla was carried out at various reaction temperatures and catalyst loads. For the liquefaction of M. aeruginosa the residence times were also varied. The reaction temperatures ranged from 260 to 340 °C, while the catalyst loads varied between 0 and 10 wt% Na2CO3. The residence time was varied between 15 and 45 minutes. The study showed that hydrothermal liquefaction of M. aeruginosa produced a maximum oil yield of 15.60 wt% at 300 °C, whereas the thermochemical liquefaction of C. meneghinia and N. pusilla produced maximum yields of 16.03 wt% and 15.33 wt%, respectively, at 340 °C. The residence time did not influence thermochemical liquefaction of the algae, while an increase in the catalyst load reduced the oil yield. The reaction conditions had no effect on the elemental composition or the calorific value of the thermochemical liquefaction oil. The calorific value of the hydrothermal liquefaction oils ranged from 28.57 to 35.90 MJ.kg -1 . Hydrothermal liquefaction of microalgae produced oil that can be used as substitute for coal in simple gasification processes. The study showed that microalgal blooms, such as the M. aeruginosa blooms of the Hartebeespoort dam, can be used for the extraction of oil through hydrothermal liquefaction. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2010.
2

Extraction of oil from algae for biofuel production by thermochemical liquefaction / Anro Barnard

Barnard, Anro January 2009 (has links)
The extraction of oil from microalgae was investigated. The study focused on the hydrothermal liquefaction of the microalgae Microcystis aeruginosa, Cyclotella meneghinia and Nitzschia pusilla. M. aeruginosa was collected from the Hartebeespoort dam, while C. meneghinia and N. pusilla were cultured in the laboratory. The experiments were conducted in a high pressure autoclave with an inert atmosphere. Sodium carbonate was studied as a potential catalyst. The hydrothermal liquefaction of M. aeruginosa, C. meneghinia and N. pusilla was carried out at various reaction temperatures and catalyst loads. For the liquefaction of M. aeruginosa the residence times were also varied. The reaction temperatures ranged from 260 to 340 °C, while the catalyst loads varied between 0 and 10 wt% Na2CO3. The residence time was varied between 15 and 45 minutes. The study showed that hydrothermal liquefaction of M. aeruginosa produced a maximum oil yield of 15.60 wt% at 300 °C, whereas the thermochemical liquefaction of C. meneghinia and N. pusilla produced maximum yields of 16.03 wt% and 15.33 wt%, respectively, at 340 °C. The residence time did not influence thermochemical liquefaction of the algae, while an increase in the catalyst load reduced the oil yield. The reaction conditions had no effect on the elemental composition or the calorific value of the thermochemical liquefaction oil. The calorific value of the hydrothermal liquefaction oils ranged from 28.57 to 35.90 MJ.kg -1 . Hydrothermal liquefaction of microalgae produced oil that can be used as substitute for coal in simple gasification processes. The study showed that microalgal blooms, such as the M. aeruginosa blooms of the Hartebeespoort dam, can be used for the extraction of oil through hydrothermal liquefaction. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2010.
3

Low-Temperature Hydrothermal Liquefaction of Giant Miscanthus with Alcohol as Cosolvent

Hafez, Islam Hassan 15 December 2012 (has links)
Energy issues in the United States are currently receiving a very high priority. There is a strong desire to replace fossil fuels with alternative sources of energy since fuel prices are rising dramatically, and for the harming effect on the environment. Biomass is one of the most promising alternative sources of energy. In this study, hydrothermal liquefaction with alcohol co-solvents was applied on giant miscanthus (Miscanthus giganteus) feedstock. All liquefaction experiments were conducted in 5500 series Parr® reactor. The most important parameters that affect the liquefaction process were studied. The yield of the liquefaction process was determined gravimetrically and the produced bio-oils were characterized. Bio-oil obtained at the optimum conditions was upgraded using different solid acid catalysts and the chemical composition for the upgraded bio-oil was determined. In a new study, the solid acids were added directly during the liquefaction process to produce upgraded bio-oil in one liquefaction/upgrading step.
4

In-situ biodiesel production from a municipal waste water clarifier effluent stream / Gert Cornelius van Tonder

Van Tonder, Gert Cornelius January 2014 (has links)
This study investigated In situ biodiesel production with supercritical methanol. A micro-algae based feedstock was used and obtained from a local water treatment plant situated just outside of Bethal, South Africa (S 26° 29’ 19.362” E 29° 27’ 11.552”). The wet feedstock was used as harvested with only the excess moisture being removed. Characterisation of the feedstock showed that a wide variety of macro-algae, micro-algae, cyanobacteria and bacterial species were present in the feedstock. The main algal species isolated from the feedstock were Nostoc sp. and Chlamydomonas. The feedstock was found to have a higher heating value (HHV) of 22 MJ.kg-1 and a lower heating value (LHV) of 16.03 MJ.kg-1 with an inherent moisture content of 270g.kg-1 feedstock. The protein and fat content of the feedstock was determined by the Agricultural Research Council (ARC) and found to be 370.1 g.kg-1 and 61.6 g.kg-1 on a moisture free basis respectively. The high protein and fat content gives a theoretical bio-yield of 430 wt%. The low lignin content and high cellulose and hemi-cellulose content indicated that the feedstock would be suitable for energy production. Three experimental sets were performed to determine the effect certain reaction parameters will have on the bio-char, bio-oil and biodiesel yields. The first set entailed hydrothermal liquefaction without the addition of methanol. The second set involved in situ biodiesel production with supercritical methanol, while both supercritical methanol and an acid catalyst were used during in situ biodiesel in the third set. For the first set of experiments the effect of temperature (240°C to 340°C in intervals of 20°C) on the crude bio-oil and bio-char yields were investigated. The highest bio-char yield was found to be 336g g char.kg-1 biomass at 280°C, while the highest crude bio-oil yield was 470.7 g crude bio-oil per kg biomass at 340°C. In the second set of experiments the dry biomass loading was kept constant at 500 g.kg-1 and the temperature varied (240°C to 300°C in intervals of 20°C) along with methanol to dry biomass ratio (1:1, 3:1 and 6:1). The optimum bio-oil yield of 597.1 g bio-oil per kg biomass for this set was found at 500 g.kg-1 biomass loading, 300°C and 3:1 methanol to dry biomass ratio. The highest bio-char yield was found to be 382.6 g bio-char.kg-1 biomass for a 1:1 methanol to dry biomass weight ratio set with 500 g.kg-1 biomass loading at 280°C. An increase in methanol ratio also led to an increase in crude bio-oil yields however the 3:1 methanol to dry biomass mass ratio was found to give the highest bio-oil yield and the purest biodiesel, with less unsaturated FAME. The 6:1 methanol to dry biomass mass ratio did however increase the FAME yield, which tends to show completion of the in situ production of biodiesel. This was also seen in the amount fatty acid methyl esters (FAME) present in the crude bio-oil as the degree of transesterification starts to increase with an increase in methanol. The FAME content was determined using gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). During the last set of experiments the temperature (260°C to 300°C in intervals of 20°C) and methanol to dry biomass ratio (1:1, 3:1 and 6:1) was varied at a constant catalyst loading of 1 wt% of the dry biomass. The optimum yields achieved were 627 g crude bio-oil per kg biomass and 376 g bio-char per kg biomass at 300°C and 280°C, respectively. These yields were achieved at 500 g.kg-1 biomass loading and 6:1 methanol ratio. Compared to the experiments where no catalyst was used, a slight increase in the yield was observed with the addition of an acid catalyst. This might be due to the base metals present in the feedstock that can lead to saponification during transesterification without the addition of an acid catalyst. An overall improvement in the extraction of crude bio-oil was observed with in situ production compared to hydrothermal liquefaction. During in situ liquefaction, the bio-oil yield increased by 150 g crude bio-oil per kg biomass higher, while the bio-char yields did not significantly vary at the optimum point of 280°C this finding has a significant value for green coal research. The highest HHV for the bio-char of 27 MJ.kg-1 +/- 0.17 MJ.kg-1 was found at 280°C and a 3:1 methanol ratio. The HHV of the bio-char decreases with an increase in temperature as more of the hydrocarbons are dissolved and form part of the bio-crude make-up. The highest HHV recorded for the crude bio-oil was 42 MJ.kg-1 at a 6:1 methanol ratio, a temperature of 300°C and an acid catalyst. The crude bio-oil HHV, which increased with an increase in temperature, is well within the specifications of the biodiesel standard (SANS, 1935). The highest FAME yield of 39.0 g.kg-1 was obtained using a 6:1 methanol ratio and a temperature of 300°C in the presence of an acid catalyst. The crude oil contained 49.0 g.kg-1 triglycerides with alkenes (C13, C15 and C17) making up the balance. The purest biodiesel yield was achieved at 3:1 methanol to dry biomass mass ratio, as it had the lowest yield unsaturated methyl esters. The overall FAME yield increased with an increase in methanol ratio. The derivatised FAME yields were the highest during hydrothermal liquefaction (55.0 g.kg-1 biomass). The in situ production of biodiesel from waste water clarifier effluent stream was found to be possible. Further investigation is needed into sufficient harvesting methods, including the optimum harvesting location, as this will result in fewer impurities in the stream and subsequent higher yields. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
5

In-situ biodiesel production from a municipal waste water clarifier effluent stream / Gert Cornelius van Tonder

Van Tonder, Gert Cornelius January 2014 (has links)
This study investigated In situ biodiesel production with supercritical methanol. A micro-algae based feedstock was used and obtained from a local water treatment plant situated just outside of Bethal, South Africa (S 26° 29’ 19.362” E 29° 27’ 11.552”). The wet feedstock was used as harvested with only the excess moisture being removed. Characterisation of the feedstock showed that a wide variety of macro-algae, micro-algae, cyanobacteria and bacterial species were present in the feedstock. The main algal species isolated from the feedstock were Nostoc sp. and Chlamydomonas. The feedstock was found to have a higher heating value (HHV) of 22 MJ.kg-1 and a lower heating value (LHV) of 16.03 MJ.kg-1 with an inherent moisture content of 270g.kg-1 feedstock. The protein and fat content of the feedstock was determined by the Agricultural Research Council (ARC) and found to be 370.1 g.kg-1 and 61.6 g.kg-1 on a moisture free basis respectively. The high protein and fat content gives a theoretical bio-yield of 430 wt%. The low lignin content and high cellulose and hemi-cellulose content indicated that the feedstock would be suitable for energy production. Three experimental sets were performed to determine the effect certain reaction parameters will have on the bio-char, bio-oil and biodiesel yields. The first set entailed hydrothermal liquefaction without the addition of methanol. The second set involved in situ biodiesel production with supercritical methanol, while both supercritical methanol and an acid catalyst were used during in situ biodiesel in the third set. For the first set of experiments the effect of temperature (240°C to 340°C in intervals of 20°C) on the crude bio-oil and bio-char yields were investigated. The highest bio-char yield was found to be 336g g char.kg-1 biomass at 280°C, while the highest crude bio-oil yield was 470.7 g crude bio-oil per kg biomass at 340°C. In the second set of experiments the dry biomass loading was kept constant at 500 g.kg-1 and the temperature varied (240°C to 300°C in intervals of 20°C) along with methanol to dry biomass ratio (1:1, 3:1 and 6:1). The optimum bio-oil yield of 597.1 g bio-oil per kg biomass for this set was found at 500 g.kg-1 biomass loading, 300°C and 3:1 methanol to dry biomass ratio. The highest bio-char yield was found to be 382.6 g bio-char.kg-1 biomass for a 1:1 methanol to dry biomass weight ratio set with 500 g.kg-1 biomass loading at 280°C. An increase in methanol ratio also led to an increase in crude bio-oil yields however the 3:1 methanol to dry biomass mass ratio was found to give the highest bio-oil yield and the purest biodiesel, with less unsaturated FAME. The 6:1 methanol to dry biomass mass ratio did however increase the FAME yield, which tends to show completion of the in situ production of biodiesel. This was also seen in the amount fatty acid methyl esters (FAME) present in the crude bio-oil as the degree of transesterification starts to increase with an increase in methanol. The FAME content was determined using gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). During the last set of experiments the temperature (260°C to 300°C in intervals of 20°C) and methanol to dry biomass ratio (1:1, 3:1 and 6:1) was varied at a constant catalyst loading of 1 wt% of the dry biomass. The optimum yields achieved were 627 g crude bio-oil per kg biomass and 376 g bio-char per kg biomass at 300°C and 280°C, respectively. These yields were achieved at 500 g.kg-1 biomass loading and 6:1 methanol ratio. Compared to the experiments where no catalyst was used, a slight increase in the yield was observed with the addition of an acid catalyst. This might be due to the base metals present in the feedstock that can lead to saponification during transesterification without the addition of an acid catalyst. An overall improvement in the extraction of crude bio-oil was observed with in situ production compared to hydrothermal liquefaction. During in situ liquefaction, the bio-oil yield increased by 150 g crude bio-oil per kg biomass higher, while the bio-char yields did not significantly vary at the optimum point of 280°C this finding has a significant value for green coal research. The highest HHV for the bio-char of 27 MJ.kg-1 +/- 0.17 MJ.kg-1 was found at 280°C and a 3:1 methanol ratio. The HHV of the bio-char decreases with an increase in temperature as more of the hydrocarbons are dissolved and form part of the bio-crude make-up. The highest HHV recorded for the crude bio-oil was 42 MJ.kg-1 at a 6:1 methanol ratio, a temperature of 300°C and an acid catalyst. The crude bio-oil HHV, which increased with an increase in temperature, is well within the specifications of the biodiesel standard (SANS, 1935). The highest FAME yield of 39.0 g.kg-1 was obtained using a 6:1 methanol ratio and a temperature of 300°C in the presence of an acid catalyst. The crude oil contained 49.0 g.kg-1 triglycerides with alkenes (C13, C15 and C17) making up the balance. The purest biodiesel yield was achieved at 3:1 methanol to dry biomass mass ratio, as it had the lowest yield unsaturated methyl esters. The overall FAME yield increased with an increase in methanol ratio. The derivatised FAME yields were the highest during hydrothermal liquefaction (55.0 g.kg-1 biomass). The in situ production of biodiesel from waste water clarifier effluent stream was found to be possible. Further investigation is needed into sufficient harvesting methods, including the optimum harvesting location, as this will result in fewer impurities in the stream and subsequent higher yields. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
6

Hydrothermal conversion of agricultural and food waste

Makhado, Tshimangadzo January 2022 (has links)
>Magister Scientiae - MSc / The global dependence on non-renewable fossil fuels to meet energy needs cannot be sustained for a long time and it is already evident in the escalation of fuel prices over the past decade. This research was performed towards renewable energy production from agricultural and food waste. The use of agricultural and food waste has benefits such as being grown in a land that is not in competition with food crops protein, all year round availability, and having high lipid content. The produced bio-crude oil can be upgraded to remove moisture and acidity level, and can be used as a substitute for heavy oils such as diesel to power static appliances or can be used as petrol distillate fuel alternative. Hydrothermal liquefaction (HTL) process is one of the commonly used technologies for converting agricultural and food waste into liquid biofuels.
7

Lifecycle Assessment of Microalgae to Biofuel: Thermochemical Processing through Hydrothermal Liquefaction or Pyrolysis

Bennion, Edward P 01 May 2014 (has links)
Microalgae have many desirable attributes as a renewable energy recourse. These include use of poor quality land, high yields, and it is not a food recourse. This research focusses on the energetic and environmental impact of processing microalgae into a renewable diesel. Two thermochemical bio-oil recovery processes are analyzed, pyrolysis and hydrothermal liquefaction (HTL). System boundaries include microalgae growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transportation to the pump. Two system models were developed, a small-scale experimental and an industrial-scale. The small-scale system model is based on experimental data and literature. The industrial-scale system model leverages the small scale system model with scaling and optimization to represent an industrial-scaled process. The HTL and pyrolysis pathways were evaluated based on net energy ratio (NER), defined here as energy consumed over energy produced, and global warming potential (GWP). NER results for biofuel production through the industrial-scaled HTL pathway were determined to be 1.23 with corresponding greenhouse gas (GHG) emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. Biofuel production through the industrial-scaled pyrolysis pathway gives a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. For reference, conventional diesel has an NER of 0.2 and GHG emissions of 18.9 g CO2 eq MJ-1 with a similar system boundary. The large NER and GHG emissions associated with the pyrolysis pathway are attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Process energetics with HTL and pyrolysis are not currently favorable for an industrial scaled system. However, processing of microalgae to biofuel with bio-oil recovery through HTL does produce a favorable environmental impact and a NER which is close to the breakeven point of one.
8

Conversion catalytique de composés modèles de biomasse en conditions hydrothermales / Hydrothermal catalytic conversion of biomass model compounds

Besse, Xavier 29 October 2015 (has links)
La liquéfaction de biomasse en conditions hydrothermales est un procédé intéressant pour les ressources contenant naturellement une part importante d'eau. Ce type de procédé a lieu dans des conditions de hautes température et pression (250-370 °C, 50-250 bar). Dans ces circonstances, différentes propriétés physico-chimiques de l'eau sont modifiées permettant notamment de faciliter les réactions de dégradation des polymères structurant la biomasse. Ce travail de thèse a eu pour but l'étude de la réactivité en conditions hydrothermales de différentes molécules modèles représentant divers segments d'une biomasse concrète. L'effet de l'ajout de catalyseurs hétérogènes dans le milieu réactionnel a été étudié. Ces catalyseurs ont été caractérisés avant et après les avoir soumis à des conditions hydrothermales. Le catalyseur Pt/C synthétisé présentant des résultats prometteurs, différentes études cinétiques ont été menées sur les molécules modèles ciblées en présence de ce catalyseur / Hydrothermal liquefaction of biomass is a promising process for resources with high water content. This type of process takes place under high temperature and pressure conditions (250-370 °C, 50-250 bar). Under these circumstances, various water physicochemical properties are modified and enable to facilitate degradation reactions of polymers that structure biomass. The aim of this phD work is to investigate the reactivity of biomass model compounds (representative of diverse real biomass segments) in hydrothermal media. The effect of the addition of heterogeneous catalysts in reaction conditions has been studied. These catalysts have previously been characterized before and after an aging in hydrothermal conditions. Synthesized Pt/C catalyst presents promising results and thus various kinetic studies have been conducted with targeted model compounds in the presence of Pt/C
9

Techno-Economic Feasibility and Life Cycle Assessment of Dairy Effluent to Biofuel via Hydrothermal Liquefaction

Summers, Hailey M. 01 May 2015 (has links)
Uncertainty in the global energy market and negative environmental impacts associated with fossil fuels has led to renewed interest in alternative fuels. The scalability of new technologies and production pathways are critically being evaluated through economic feasibility studies and environmental impact assessments. This work investigated the conversion of agricultural wast, delactosed whey permeate (delac), with yeast fermentation for the generation of biofuel via hydrothermal liquefaction (HTL). The feasibility of the process was demonstrated at laboratory scale with data leveraged to validate systems models used to perform industrial-scale economic and environmental impact analyses. Results showed a minimum fuel selling point of $4.56 per gasoline gallon equivalent (CGE), a net energy ratio (NER), defined as energy required to process biofuel divided by energy in the biofuel produced, of 0.81 and greenhouse gas (GHG) emissions of 30.03 g CO2-eq MJ-1. High Production costs can be attributed to operational temperatures of HTL while the high lipid yields of the yeast counter these heating demands, resulting in a favorable NER. The operating conditions of both fermentation and HTL contributed to the majority of GHG emissions. Further discussion focuses on optimization of the process, on the metrics of TEA and LCA and the evaluation of the process, on the metrics of TEA and LCA, and the evaluation of the process through a sensitivity analysis that highlights areas for directed research to improve commercial feasibility.
10

Aplicação de bio-adsorventes como pré-tratamento da digestão anaeróbia de efluente de liquefação hidrotermal de Spirulina / Application of bioasorbents in pretreatment treatment of anaerobic digestion of effluent from Spirulina hydrothermal liquefaction

Sapillado Condori, Gilda 05 February 2019 (has links)
A liquefação hidrotermal (HTL) é uma tecnologia muito utilizada para a conversão de diversos tipos de biomassa em Bio-óleo bruto; contudo, enquanto tal combustível é produzido uma fase aquosa (PHWW), rica em matéria orgânica e alguns compostos tóxicos, também é gerada, podendo ocasionar severos impactos ambientais negativos. O objetivo da presente pesquisa foi aplicar dois bio-adsorventes: in natura (BAA) e ativado quimicamente (BAAA), derivados da casca de amendoim, como pré-tratamentos da PHWW afim de melhorar sua biodegradabilidade anaeróbia. O carvão ativado granular (GAC) foi utilizado como adsorvente modelo para comparação. Os processos de adsorção foram otimizados com a utilização de desenhos compostos centrais rotacionais (DCCR), no quais as variáveis independentes foram: pH do adsorvato, temperatura e quantidade de (bio) adsorvente no meio. A porcentagem de remoção de DQO e do íon amônio foram as variáveis dependentes. Isotermas de adsorção foram obtidas em ensaios em batelada. Após realizado o estudo do processo de adsorção, o potencial metanogênico dos efluentes pré-tratados e do efluente in natura foi determinado. Esses ensaios foram conduzidos com três concentrações de PHWW (6,5%, 13% e 26%), com dois ensaios controle, um negativo e outro positivo. A pressão nos frascos reatores foi monitorada diariamente e a determinação da composição do biogás produzido foi realizada por cromatografia gasosa uma vez por semana. Os resultados para a processo adsortivo foram encorajadores, uma vez que cada bio-adsorvente testado foi otimizado para diferentes variáveis resposta: BAA (NH4+) e BAAA (DQO). Os ensaios anaeróbios mostraram que uma maior taxa de produção metanogênica, dos efluentes pré-tratados, pode estar ligada à modificação química da superfície nas cascas de amendoim. Foi possível concluir que a bio-adsorção se perfila como uma alternativa sustentável para o pré-tratamento de efluentes advindos da HTL de cianobactérias. / Hydrothermal liquefaction (HTL) is a technology widely used for the conversion of several types of biomass to bio-crude oil; however, while such a fuel is produced an aqueous phase (PHWW), rich in organic matter and some toxic compounds, is also generated and can cause severe negative environmental impacts. The objective of the present research was to apply two bio-adsorbents: peanut bio-adsorbent (PB) and activated peanut bio-adsorbent (APB), as pre-treatments of PHWW to improve their anaerobic biodegradability. Granular activated carbon (GAC) was used as an absorbent model for comparison. The adsorption process was optimized with the use of central rotational composite designs (DCCR), in which the independent variables were: pH of the adsorbate, temperature and amount of (bio) adsorbent in the medium. The percentage of COD removal and ammonium ion were the dependent variables. After the study of the adsorption process, the methanogenic potential of the pretreated effluents and raw PHWW was determined. These trials were conducted with three concentrations of PHWW (6.5%, 13% and 26%), with two control trials, one negative and one positive. The pressure in the reactor flasks was monitored daily and the composition of the biogas produced was determined by gas chromatography once a week. The results for the adsorption process were encouraging, and ach bio-adsorbent tested was optimized for different response variables: PB (NH4+) and APB (COD). The anaerobic assays showed that a higher rate of methanogenic production of pretreated effluents may be linked to the chemical modification of the surface in the peanut shells. It was possible to conclude that the bio adsorption is outlined as a sustainable alternative for the pretreatment of effluents coming from HTL.

Page generated in 0.097 seconds