• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportement hygroscopique et couplage hygromécanique dans les composites lin / époxy : approche expérimentale multi-échelle et modélisation / Hygroscopic behaviour and hygromechanical coupling in flax / epoxy composites : multi-scale experimental approach and modelling

Abida, Marwa 21 December 2018 (has links)
Les renforts à base de fibres de lin sont aujourd’hui une alternative capable de concurrencer les fibres synthétiques conventionnelles puisqu’ils sont écologiques, économiques et présentent des propriétés mécaniques intéressantes. Cependant, leur inconvénient majeur est leur absorption d’eau potentiellement importante qui affecte leurs propriétés mécaniques. Ce projet de recherche propose d’étudier le comportement hygroscopique et le couplage hygro-mécanique dans les composites lin / époxy. Cette étude repose sur une approche expérimentale multi-échelle et une modélisation du comportement visco-élasto-plastique avec prise en compte du couplage hygro-mécanique des composites renforcés par des fibres de lin. Les cinétiques de diffusion dans l’époxy et dans le composite ont été modélisées par une loi de type Langmuir et Fick respectivement. Les coefficients d’hygro-expansion des composites et des fils élémentaires qui constituent le renfort tissu ont été déterminés expérimentalement. Une étude de l’influence du conditionnement jusqu’à saturation à différentes humidités relatives sur le comportement mécanique dans les trois directions du stratifié a également été menée. Cette étude a montré l’existence d’une teneur en eau optimale pour laquelle les propriétés mécaniques sont optimales. L’émergence d’un comportement à deux régions linéaires a été mise en évidence et attribuée à la présence d’hétérogénéités locales au sein du renfort tissu. Des essais de fluage / recouvrance et de relaxation / effacement ont permis de mettre en place un modèle visco-élasto-plastique avec prise en compte du couplage hygro-mécanique. Ce modèle offre de bonnes capacités de prédiction et permettra de prévoir le comportement des structures composites renforcés par des fibres de lin en atmosphère humide. / Flax fibre reinforcements are nowadays an alternative able to compete with conventional synthetic fibres since they are ecological, economic and have interesting mechanical properties. However, their major drawback is their potentially significant water absorption which affects their mechanical properties. This research project proposes to study the hygroscopic behaviour and hygro-mechanical coupling in flax / epoxy composites. This study is based on a multi-scale experimental approach. A modelling of visco-elasto-plastic behaviour taking into account the hygro-mechanical coupling within flax /epoxy composites is established. The diffusion kinetics in composites were modelled by a Fick law. However, the diffusion kinetics in epoxy were modelled by a Langmuir law. The hygro-expansion coefficients of the composites and the elementary yarns that constitute the fabric reinforcement were determined experimentally. A study of the influence of conditioning until saturation at different relative humidities on the mechanical behaviour in the three main directions of the laminates was conducted. This study showed the existence of an optimal water content for which the mechanical properties are maximum. The emergence of a two-linear-region behaviour was pointed out and attributed to the presence of local heterogeneities within the fabric reinforcement. Creep / recovery and stress relaxation tests were exploited in order to develop a visco-elastoplastic model with consideration of the hygro-mechanical coupling. This model offers good predictive capabilities and could be used to predict the behaviour of flax fibres reinforced composite structures in humid atmospheres.
2

Etude expérimentale et modélisation multi-échelles du comportement hygro-mécanique des matériaux de construction : cas du bois / Experimental study and multi-scale modeling of the hygro-mechanical behavior of porous building materials

El Hachem, Chady 27 November 2017 (has links)
L’habitat sain est le thème central des réflexions contemporaines du domaine du bâtiment élargies à l’environnement. Il comporte des préoccupations notables en matière de santé, de consommation énergétique (la ventilation, le chauffage, la climatisation et l’eau chaude), d’impacts environnementaux et de durabilité des matériaux de construction. Le choix préliminaire des matériaux utilisés pour la construction joue un rôle important dans la réussite d’un projet HQE (Haute Qualité Environnementale). Dans ce contexte, la problématique de prévision des champs de température et d’humidité demeure essentielle à l’intérieur des matériaux poreux de construction, où les matériaux biosourcés font l'objet d'un fort intérêt vu leurs qualités environnementales. Les matériaux biosourcés, étant hygroscopiques, ont tendance à absorber ou à restituer l’humidité, ce qui génère respectivement un gonflement ou un retrait. A l’échelle microscopique, l’humidité prend place soit par l’absorption de l’eau liée par les fibres, soit par l’existence d’eau libre dans les pores. Cette complexité des phénomènes microscopiques dans les matériaux biosourcés mène à une forte interaction entre l’aspect mécanique et les aspects de transferts de masse et de chaleur. L’existence de ce couplage est susceptible de modifier sensiblement les performances thermiques du bâtiment, et même sa durabilité. L’objectif visé par ce travail de thèse est l’étude et l’analyse microscopique du comportement hygrique des matériaux poreux de construction. L’aspect mécanique couplé à l’aspect hygrique est abordé en prenant en considération les déformations locales de gonflement - retrait, et leur impact sur l’hystérésis de teneur en eau. La maîtrise de ce couplage est primordiale tant sur le plan de la prédiction de la qualité des ambiances habitables que sur l’évaluation de la durabilité de ces structures. Le projet de thèse consiste à travailler à la fois sur les aspects modélisation, caractérisation et mesure des transferts hygriques. La quantification de ces phénomènes est réalisée à travers des campagnes de mesures expérimentales basées sur des techniques d’imagerie 3D (micro-tomographie aux rayons X). Le recours à la diffraction aux rayons X (DRX), à la corrélation d’images volumique, ainsi qu’à la résonance magnétique nucléaire (RMN) permet d’avoir une meilleure compréhension des échanges entre la matrice solide et l’eau liée et/ou libre. Tous ces travaux ont mené à une meilleure caractérisation de la morphologie du bois d’épicéa à l’échelle microscopique, ainsi qu’à une meilleure estimation des diverses variations dimensionnelles (gonflement) à l’échelle des parois cellulaires et de leurs constituants chimiques. Les résultats numériques obtenus sur la structure réelle 3D du matériau ont été couplés aux mesures expérimentales à travers la corrélation d’images volumiques (micro-tomographie aux rayons X) afin d’identifier les propriétés intrinsèques des phénomènes et du matériau. Ces travaux de thèse constitueront une base scientifique permettant une meilleure modélisation du couplage mécanique avec les transferts de chaleur et de masse dans les matériaux biosourcés. / Healthy living is a main contemporary concern of the construction field, extended to the environment. It has significant concerns about health, energy consumption, environmental impact and sustainability of building materials. The preliminary selection of materials used for construction plays an important role in the success of high environmental quality projects. In this context, it remains essential to predict the temperature and humidity fields inside porous building materials, where bio-based materials are subject to a strong interest due to their environmental qualities.As bio-based materials are hygroscopic, they tend to absorb or restore moisture, which respectively generates swelling or shrinkage. At the microscopic scale, moisture takes place either by absorption of bound water by the fibers, or by the existence of free water in the pores. The complexity of microscopic phenomena in bio-based materials will lead to strong interactions between the mechanical aspect on one side and heat and mass transfers’ aspects on the other side. The existence of this coupling may significantly alter the building's thermal performance, as well as its durability.The objective of this thesis work is to study the microscopic hygric behavior of porous building materials. The mechanical aspect coupled to the hygric one is studied, taking into consideration the local swelling and shrinkage strains, and their impact on the hysteresis phenomenon. Understanding this coupling is very important in order to improve the quality of habitat and evaluate the durability of these structures.The PhD project consists on working on all aspects, modeling, characterization and measurement of hygric transfers. Quantification of these phenomena is achieved through experimental campaigns based on 3D imaging techniques (X-ray micro-tomography). The use of X-ray diffraction (XRD), digital volume correlation, as well as nuclear magnetic resonance (NMR) allows a better understanding of the interactions between the solid matrix and bound and/or free water. The corresponding results have led to a microscopic morphological characterization of spruce wood, as well as to a better estimation of the various dimensional variations of the cell walls, and their chemical components.The numerical results achieved on the real 3D structure of the material have been coupled to the experimental ones, using digital volume correlation technique (X-ray tomography), in order to identify the intrinsic properties of the material.These thesis works provide a scientific basis allowing the improvement of modeling of the mechanical coupling with heat and mass transfers in bio-based materials.

Page generated in 0.1041 seconds