• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal performance of closed-cell foam insulation board under different temperature conditions

Jagdev, Gurpreet Singh 05 March 2019 (has links)
Thermal performance of an insulation material is influenced by the in-service temperature condition. Unlike most other insulation materials, thermal resistance (R-value) of polyisocyanurate (polyiso) foam insulation with ‘captive blowing agent’ varies non-linearly with temperature. Building designers consider constant R-value of different insulating materials for building design and energy calculations, and hygrothermal simulation software packages, such as WUFI, consider linear temperature dependent R-value profiles, even for polyiso. However, neither the linear temperature dependent thermal resistance nor the constant thermal resistance value of polyiso represents the actual thermal performance of the building envelope. This thesis aims to quantify the impact of in-service boundary temperature conditions in Canadian climates on the thermal resistance of polyiso foam insulation board used in EPDM and PVC roof constructions. Hygrothermal simulations were performed using WUFI® Pro, which considers real climate data and hygrothermal properties of constituent roof components for evaluating moisture and temperature conditions in roof constructions. Based on heating degree days (HDD), ten different cities were selected between climate Zone 4 (HDD<3000) to Zone 8 (HDD≥7000). The thermal resistance measurements were conducted using heat flow meter apparatus on four polyiso insulation boards (two new and two aged) of different sizes [thickness - new: 1inch (25mm) and 2 inch (51mm); aged: 2 inch (51mm) and 3 inch (76mm)] at five mean temperatures -4°C (25°F), 4.5°C (40°F), 10°C (50°F), 24°C (75°F), 43°C (110°F) and at a temperature differential of 28°C (50°F). The measured thermal resistance data of the four samples at different mean temperatures were normalized with calculated thermal resistance of each sample at 22°C (72°F). The normalized R-value variation was calculated using in-service boundary temperature conditions determined from hygrothermal simulations and considering linearly varied thermal resistance with temperature, for the selected ten Canadian cities. / Graduate
2

Moisture management in VIP retrofitted walls

Sharma, Abhishek 07 June 2017 (has links)
Thermal resistance per unit thickness for Vacuum Insulation Panel (VIP) is 5 to 10 times higher than conventional insulation materials. This makes VIP an attractive option for retrofitting exterior building envelopes. Insulation can be added in an exterior wall either on the interior side, exterior side or in the available stud cavity. VIP has high vapor diffusion resistance factor and could lead to moisture management risk in the wall layers because of the steep temperature gradient in the wall generated due to very high thermal resistance of VIP. VIP is a relatively new insulation material for building envelope construction, thus the hygrothermal or moisture management performance of VIP-insulated exterior building envelopes need to be critically analyzed before its application. This study aims to evaluate the moisture management risk associated with wood-frame stucco-cladded exterior walls retrofitted with VIP using a 2-D hygrothermal simulation tool WUFI-2D. Eight North American locations were considered, based on Moisture Index (MI) which varied between 0.13 and 1.17, and two different indoor hygrothermal loading conditions as prescribed by the ASHRAE 160P and EN 13788, respectively. The outputs from hygrothermal simulations (water content, relative humidity and temperature) were critically analysed and expressed further using freeze-thaw cycles and RHT indices. The results show that the appropriately designed VIP retrofitted walls can have superior moisture management performance as compared to conventional stucco-cladded wall. / Graduate

Page generated in 0.1366 seconds