Spelling suggestions: "subject:"typer concentration"" "subject:"hyper concentration""
1 |
Review of Suspended Sediment Transport Mathematical Modelling StudiesWallwork, J.T., Pu, Jaan H., Kundu, S., Hanmaiahgari, P.R., Pandey, M., Satyanaga, A., Khan, M.A., Wood, Alistair S. 23 March 2022 (has links)
Yes / This paper reviews existing studies relating to the assessment of sediment concentration profiles within various flow conditions due to their importance in representing pollutant propagation. The effects of sediment particle size, flow depth, and velocity were considered, as well as the eddy viscosity and Rouse number influence on the drag of the particle. It is also widely considered that there is a minimum threshold velocity required to increase sediment concentration within a flow above the washload. The bursting effect has also been investigated within this review, in which it presents the mechanism for sediment to be entrained within the flow at low average velocities. A review of the existing state-of-the-art literature has shown there are many variables to consider, i.e., particle density, flow velocity, and turbulence, when assessing the suspended sediment characteristics within flow; this outcome further evidences the complexity of suspended sediment transport modelling.
|
2 |
Flood Suspended Sediment Transport: Combined Modelling from Dilute to Hyper-concentrated FlowPu, Jaan H., Wallwork, Joseph T., Khan, M.A., Pandey, M., Pourshahbaz, H., Satyanaga, A., Hanmaiahgari, P.R., Gough, Tim 15 February 2021 (has links)
Yes / During flooding, the suspended sediment transport usually experiences a wide-range of dilute to hyper-concentrated suspended sediment transport depending on the local flow and ground con-ditions. This paper assesses the distribution of sediment for a variety of hyper-concentrated and dilute flows. Due to the differences between hyper-concentrated and dilute flows, a linear-power coupled model is proposed to integrate these considerations. A parameterised method combining the sediment size, Rouse number, mean concentration, and flow depth parameters has been used for modelling the sediment profile. The accuracy of the proposed model has been verified against the reported laboratory measurements and comparison with other published analytical methods. The proposed method has been shown to effectively compute the concentration profile for a wide range of suspended sediment conditions from hyper-concentrated to dilute flows. Detailed com-parisons reveal that the proposed model calculates the dilute profile with good correspondence to the measured data and other modelling results from literature. For the hyper-concentrated profile, a clear division of lower (bed-load) to upper layer (suspended-load) transport can be observed in the measured data. Using the proposed model, the transitional point from this lower to upper layer transport can be calculated precisely.
|
Page generated in 0.1024 seconds