• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouveau procédé d'hyperdéformation pour les tubes / New severe plastic deformation process for tubes

Arzaghi, Mandana 02 December 2010 (has links)
La nouvelle technique d'hyperdéformation nommée High Pressure Tube Twisting (HPTT), est un procédé continu d'affinement du grain pour les matériaux métalliques avec la géométrie tubulaire. Il consiste à placer un mandrin dans le tube avant d'appliquer une compression axiale directement sur le tube confiné des deux côtés pour produire une pression hydrostatique importante. Le tube est ensuite cisaillé par un couple externe à l'aide de la force de frottement généré par la pression hydrostatique. Les structures ultrafines produit avec HPTT ont été confirmés par MET et leur propriétés mécaniques ont été évaluées. La limite d'élasticité est augmentée de façon monotone avec la déformation imposée par HPTT. L'évolution de la microstructure est étudiée par la technique EBSD et les mesures de texture ont été réalisées avec des rayons X. Les échantillons déformés ont la texture de cisaillement simple, avec des intensités relativement faibles et l'effet de la texture initiale sur la texture finale persiste jusqu'à un cisaillement de 6. La distribution des désorientations entre les grains est bimodale et le second pic augmente avec la déformation. Application industrielle de cette nouvelle technique SPD exige la modélisation avancée en termes d'évolution de texture et le processus de fragmentation des grains. Dans ce but, le nouveau modèle de fragmentation du grain proposé par Toth et al. a été utilisée. L'affinement du grain améliore les résultats de simulation texture de façon significative et donne des informations complémentaires sur la distribution et la taille moyenne des grains, et la distribution de désorientation qui peut être directement comparés aux résultats expérimentaux / The new severe plastic deformation (SPD) technique, designated as high pressure tube twisting (HPTT), is a continuous process for grain refinement in bulk metallic materials with tubular geometry. It consists of placing a mandrel into the tube before applying an axial compression directly on the tube confined on both sides to produce high hydrostatic pressure. The tube is then twisted by an external torque with the help of the friction force genrated by the hydrostatic pressure. The ultra-fine grained structures produced with HPTT were confirmed using transmission electron microscopy and their microstructure and mechanical properties were evaluated. The value of yield stress is increased monotonically with the deformation imposed by HPTT. Meanwhile, the inverse deformation path is proved to be less advantageous. Microstructural evolution is studied by EBSD technique and texture measurements were carried out using X-ray. Deformed samples have simple shear texture with relatively low intensities and the effect of the initial texture on the final texture persists up to shear strain of nearly 6. Grain-to-grain misorientation distribution functions are bimodal and the second pick become higher with increasing strain. Industrial application of this new SPD technique requires advanced modelling in terms of texture evolution and grain fragmentation process. For this purpose, the new grain refinement model proposed by Toth and al. was used. Grain refinement improves the texture simulation results significantly and gives information on the average grain size, grain size distribution and misorientation distribution function that can be directly compared to experimental results
2

Textures et microstructures dans l'aluminium, le cuivre et le magnésium après hyperdéformation / Textures and microstructures in Al, Cu and Mg under severe plastic deformation

Chen, Cai 17 June 2016 (has links)
L'hyperdéformation est une technique efficace pour transformer la microstructure des métaux en une structure de grain de taille inférieure au micron ou même en nanostructure (<100 nm). Cette très petite taille de grain confère d'excellentes propriétés mécaniques au matériau. Dans ce travail de thèse, deux techniques d'hyperdéformation récemment développées, appelées High Pressure Tube Twisting (HPTT) and Cyclic Expansion and Extrusion (CEE) ont été appliquées à température ambiante sur différents matériaux métalliques. La fragmentation de la microstructure ainsi que le développement de la texture cristallographique ont été analysés en détails par la diffraction d'électrons rétrodiffusés (EBSD), par microscopie électronique en transmission (TEM), par transmission Kikuchi diffraction (TKD) ainsi que par diffraction des rayons X (XRD). Le gradient de déformation de cisaillement dans l'épaisseur des tubes d'aluminium déformés par HPTT a été déterminé par une méthode de mesure locale du cisaillement. Ce gradient de cisaillement induit une hétérogénéité aussi bien de microstructure que de texture dans les échantillons d'aluminium et de magnésium purs ainsi que dans l'alliage Al-4%Mg en solution solide. La micro-dureté et la taille de grain dans différentes zones ont été mesurées et analysées en fonction du taux cisaillement local. Les tailles de grain limites atteintes de façon stationnaire pour ces différents matériaux produit par HPTT sont respectivement de 700 nm, 900 nm et 100 nm. L'évolution de texture du magnésium pur après HPTT jusqu'à un cisaillement de 16 a été simulée par cisaillement simple par le model auto-cohérent (VPSC), le résultat de simulation a montré de bons accords avec les mesures de texture obtenues par XRD. Sur la base des mesures de distribution de désorientation dans l'aluminium déformé par HPTT, une nouvelle technique de détermination du taux de cisaillement local dans les procédés d'hyper déformation a été proposée. Cette nouvelle technique a été appliquée sur deux échantillons d'aluminium produit par twist extrusion (TE) et par torsion à extrémités libres. Les échantillons d'aluminium et de cuivre ont été déformés intensément par CEE. Les évolutions de texture et de microstructures ont été mesurées par EBSD, montrant un gradient du centre à la périphérie des échantillons cylindriques. L'évolution de texture dans le cuivre déformé par CEE a été simulée par le modèle VPSC en utilisant un modèle de ligne de courant pour décrire la déformation dans le procédé. Les résultats de simulation confirment les caractéristiques de la texture expérimentale observées après CEE. Le comportement en traction du cuivre pré-déformé par grande déformation en torsion a ensuite été testé. En dépit du gradient de cisaillement existant dans la barre, une technique a été proposée pour obtenir la courbe contrainte-déformation pour ce type de matériau. / Severe plastic deformation (SPD) is an efficient technique to transform the microstructure of bulk metals into ultra fine grained structure with grain sizes less than 1 µm or even into nanostructure with nano-grains of less than 100 nm in diameter. The very small grain size attributes excellent mechanical properties to the material. In present thesis work, two recently developed SPD techniques, namely, High Pressure Tube Twisting (HPTT) and Cyclic Expansion and Extrusion (CEE) were performed on different metallic materials at room temperature. Details of fragmentation of microstructure and metallographic texture evolution were investigated by electron backscattered diffraction (EBSD), transmission electron microscopy (TEM), transmission kikuchi diffraction (TKD) and X-ray diffraction (XRD). Shear strain gradient across the thickness of the HPTT deformed Al tube sample was found by a local shear measurement method. This shear strain gradient induced the inhomogeneity of microstructure and texture in HPTT deformed pure Al, solid solution alloy Al-4%Mg and pure Mg. The microhardness and average grain size in different zones as a function of shear strain were measured. The limiting steady grain sizes in the steady state for these different materials produced by HPTT were 700 nm, 100 nm and 900 nm, respectively. The texture evolution of pure Mg in HPTT up to a shear strain of 16 was simulated in simple shear using the self-consistent (VPSC) polycrystal model and showed good agreements with the experimental results measured by XRD. Based on the measured disorientation distribution function in HPTT deformed Al, a new technique for the magnitude of local shear strain in SPD was proposed. This new technique was applied to a protrusion produced in twist extrusion (TE) and to an Al sample deformed in free-end torsion. Cu and pure Al samples were intensively deformed by the CEE SPD technique. The microstructure and texture evolutions were measured by EBSD, showing a gradient from the center-zone to the edge part of the rod sample. The texture evolution of CEE deformed Cu was simulated by the VPSC polycrystal model using a flow line function. The simulation results confirmed the experimental texture features observed in the CEE process. The tensile testing behavior of large strain torsion pre-processed Cu was examined. In spite of the shear strain gradient existing in the bar, a technique was proposed to obtain the tensile stress-strain curve of such gradient material.

Page generated in 0.1157 seconds