• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minimum Degree Conditions for Tilings in Graphs and Hypergraphs

Lightcap, Andrew 01 August 2011 (has links)
We consider tiling problems for graphs and hypergraphs. For two graphs and , an -tiling of is a subgraph of consisting of only vertex disjoint copies of . By using the absorbing method, we give a short proof that in a balanced tripartite graph , if every vertex is adjacent to of the vertices in each of the other vertex partitions, then has a -tiling. Previously, Magyar and Martin [11] proved the same result (without ) by using the Regularity Lemma. In a 3-uniform hypergraph , let denote the minimum number of edges that contain for all pairs of vertices. We show that if , there exists a -tiling that misses at most vertices of . On the other hand, we show that there exist hypergraphs such that and does not have a perfect -tiling. These extend the results of Pikhurko [12] on -tilings.

Page generated in 0.0579 seconds