• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigations on Hypersonic Waverider

Nagashetty, K January 2014 (has links) (PDF)
In the flying field of space transportation domain, the increased efforts involving design and development of hypersonic flight for space missions is on toe to provide the optimum aerothermodynamic design data to satisfy mission requirements. Aerothermodynamics is the basis for designing and development of hypersonic space transportation flight vehicles such as X 51 a, and other programmes like planetary probes for Moon and Mars, and Earth re-entry vehicles such as SRE and space shuttle. It enables safe flying of aerospace vehicles, keeping other parameters optimum for structural and materials with thermal protection systems. In this context, the experimental investigations on hypersonic waverider are carried out at design Mach 6. The hypersonic waverider has high lift to drag ratio at design Mach number even at zero degree angle of incidence, and this seems to be one of the special characteristics for its shape at hypersonic flight regime. The heat transfer rates are measured using 30 thin film platinum gauges sputtered on a Macor material that are embedded on the test model. The waverider has 16 sensors on top surface and 14 on bottom surface of a model. The surface temperature history is directly converted to heat transfer rates. The heat transfer data are measured for design (Mach 6) and off-design Mach numbers (8) in the hypersonic shock tunnel, HST2. The results are obtained at stagnation enthalpy of ~ 2 MJ/kg, and Reynolds number range from 0.578 x 106 m-1 to 1.461 x 106 m-1. In addition, flow visualization is carried out by using Schlieren technique to obtain the shock structures and flow evolution around the Waverider. Some preliminary computational analyses are conducted using FLUENT 6.3 and HiFUN, which gave quantitative results. Experimentally measured surface heat flux data are compared with the computed one and both the data agree well. These detailed results are presented in the thesis.

Page generated in 0.1167 seconds