Spelling suggestions: "subject:"hyperspectral remote ensing"" "subject:"hyperspectral remote densing""
1 |
Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican PacificZhang, Chunhua, Kovacs, John M., Liu, Yali, Flores-Verdugo, Francisco, Flores-de-Santiago, Francisco 01 January 2014 (has links)
Given the scale and rate of mangrove loss globally, it is increasingly important to map and monitor mangrove forest health in a timely fashion. This study aims to identify the conditions of mangroves in a coastal lagoon south of the city of Mazatlán, Mexico, using proximal hyperspectral remote sensing techniques. The dominant mangrove species in this area includes the red (Rhizophora mangle), the black (Avicennia germinans) and the white (Laguncularia racemosa) mangrove. Moreover, large patches of poor condition black and red mangrove and healthy dwarf black mangrove are commonly found. Mangrove leaves were collected from this forest representing all of the aforementioned species and conditions. The leaves were then transported to a laboratory for spectral measurements using an ASD FieldSpec® 3 JR spectroradiometer (Analytical Spectral Devices, Inc., USA). R2 plot, principal components analysis and stepwise discriminant analyses were then used to select wavebands deemed most appropriate for further mangrove classification. Specifically, the wavebands at 520, 560, 650, 710, 760, 2100 and 2230 nm were selected, which correspond to chlorophyll absorption, red edge, starch, cellulose, nitrogen and protein regions of the spectrum. The classification and validation indicate that these wavebands are capable of identifying mangrove species and mangrove conditions common to this degraded forest with an overall accuracy and Khat coefficient higher than 90% and 0.9, respectively. Although lower in accuracy, the classifications of the stressed (poor condition and dwarf) mangroves were found to be satisfactory with accuracies higher than 80%. The results of this study indicate that it could be possible to apply laboratory hyperspectral data for classifying mangroves, not only at the species level, but also according to their health conditions.
|
2 |
Hyperspectral Remote Sensing for Winter Wheat Leaf Area Index Assessment in Precision AgricultureSiegmann, Bastian 21 February 2017 (has links)
Remote sensing provides temporal, spectral and spatial information covering a wide
area. Therefore, it has great potential in offering a detailed quantitative determination
of the leaf area index (LAI) and other crop parameters in precision agriculture. The
spatially differentiated assessment of LAI is of utmost importance for enabling an
adapted field management, with the aim of increasing yields and reducing costs at the
same time. The scientific focus of this work was the investigation of the potential of
hyperspectral remote sensing data of different spectral resolutions, which were acquired at different spatial scales, for a precise assessment of wheat LAI. For this reason, three research experiments were conducted: 1) a comparison of different empirical-statistical regression techniques and their capabilities for a robust LAI prediction; 2) a determination of the required spectral resolution and important spectral
regions/bands for precise LAI assessment; and 3) an investigation of the influence of
the ground sampling distance of remote sensing images on the quality of spatial LAI
predictions. The first part of this thesis compared three empirical-statistical regression
techniques – namely, partial least-squares regression (PLSR), support vector
regression (SVR) and random forest regression (RFR) – and their achieved model
qualities for the assessment of wheat LAI from field reflectance measurements. In this
context, the two different validation techniques – leave-one-out cross-validation (cv) and independent validation (iv) – were applied for verifying the accuracy of the
different empirical-statistical regression models. The results clearly showed that model
performance markedly depends on the validation technique used to assess model
accuracy. In the case of leave-one-out cross-validation, SVR provided the best results,
while PLSR proved to be superior to SVR and RFR when independent validation was
applied. In the second part of this thesis, the spectral characteristics of the hyperspectral
airborne sensor aisaDUAL (98 spectral bands) and the upcoming hyperspectral satellite mission EnMAP (204 spectral bands) were investigated to show their capability regarding the precise determination of wheat LAI. Moreover, the feature selection algorithm RReliefF, combined with a randomized sampling approach, was applied to identify the spectral bands that were most sensitive to changes in LAI. The results demonstrated that only three spectral bands of aisaDUAL, as well as EnMAP, at specific locations within the investigated spectral range (400–2,500 nm) were necessary for an accurate LAI prediction.
The third part of this thesis dealt with the influence of the spatial resolution of
aisaDUAL (3 m) and simulated EnMAP (30 m) image data on the assessment of wheat
LAI. While the ground sampling distance (GSD) of aisaDUAL allowed a robust regression model calibration and validation, LAI predictions based on simulated EnMAP image data led to poor results because of the distinct difference in size between the EnMAP pixels (900 m2) and the sampled field plots (0.25 m2) for which
the LAI was measured. In order to enable a more precise determination of wheat LAI
from EnMAP image data, the two different approaches of image aggregation and
image fusion were examined. In this context, the fusion approach has proven to be the
more suitable method, which allowed a more accurate LAI prediction compared to the
results based on the EnMAP data with a GSD of 30 m. In summary, the findings of the research reported in this thesis demonstrated that
the accuracy of spatial LAI predictions from remote sensing data depends on several
factors. Besides the applied empirical-statistical retrieval- and validation method, the spatial and spectral characteristics of the used image data sets played an important role.
With the forthcoming hyperspectral satellite missions (e.g., EnMAP, HyspIRI), the
area-wide assessment of LAI and other crop parameters (e.g., biomass, chlorophyll
content) will be strongly supported. The moderate spatial resolutions of these satellites
systems, however, require a combined use with spatial higher resolution multi- or
superspectral satellite data (e.g., RapidEye, Sentinel-2). This multisensoral approach
offers great potential for the prompt identification of spatial variations in crop
conditions on sub-field scale, which is a mandatory prerequisite for precision
agricultural applications.
|
3 |
The discrete wavelet transform as a precursor to leaf area index estimation and species classification using airborne hyperspectral dataBanskota, Asim 09 September 2011 (has links)
The need for an efficient dimensionality reduction technique has remained a critical challenge for effective analysis of hyperspectral data for vegetation applications. Discrete wavelet transform (DWT), through multiresolution analysis, offers oppurtunities both to reduce dimension and convey information at multiple spectral scales. In this study, we investigated the utility of the Haar DWT for AVIRIS hyperspectral data analysis in three different applications (1) classification of three pine species (Pinus spp.), (2) estimation of leaf area index (LAI) using an empirically-based model, and (3) estimation of LAI using a physically-based model. For pine species classification, different sets of Haar wavelet features were compared to each other and to calibrated radiance. The Haar coefficients selected by stepwise discriminant analysis provided better classification accuracy (74.2%) than the original radiance (66.7%). For empirically-based LAI estimation, the models using the Haar coefficients explained the most variance in observed LAI for both deciduous plots (cross validation R² (CV-R²) = 0.79 for wavelet features vs. CV-R² = 0.69 for spectral bands) and all plots combined (CV R² = 0.71 for wavelet features vs. CV-R² = 0.50 for spectral bands). For physically-based LAI estimation, a look-up-table (LUT) was constructed by a radiative transfer model, DART, using a three-stage approach developed in this study. The approach involved comparison between preliminary LUT reflectances and image spectra to find the optimal set of parameter combinations and input increments. The LUT-based inversion was performed with three different datasets, the original reflectance bands, the full set of the wavelet extracted features, and the two wavelet subsets containing 99.99% and 99.0% of the cumulative energy of the original signal. The energy subset containing 99.99% of the cumulative signal energy provided better estimates of LAI (RMSE = 0.46, R² = 0.77) than the original spectral bands (RMSE = 0.69, R² = 0.42). This study has demonstrated that the application of the discrete wavelet transform can provide more accurate species discrimination within the same genus than the original hyperspectral bands and can improve the accuracy of LAI estimates from both empirically- and physically-based models. / Ph. D.
|
4 |
Refining the Concept of Combining Hyperspectral and Multi-angle Sensors for Land Surface ApplicationsSimic, Anita 08 March 2011 (has links)
Assessment of leaf and canopy chlorophyll content provides information on plant physiological status; it is related to nitrogen content and hence, photosynthesis process, net primary productivity and carbon budget. In this study, a method is developed for the retrieval of total chlorophyll content (Chlorophyll a+b) per unit leaf and per unit ground area based on improved vegetation structural parameters which are derived using multispectral multi-angle remote sensing data. Structural characteristics such as clumping and gaps within a canopy affect its solar radiation absorption and distribution and impact its reflected radiance acquired by a sensor. One of the main challenges for the remote sensing community is to accurately estimate vegetation structural parameters, which inevitably influence the retrieval of leaf chlorophyll content. Multi-angle optical measurements provide a means to characterize the anisotropy of surface reflectance, which has been shown to contain information on vegetation structural characteristics. Hyperspectral optical measurements, on the other hand, provide a fine spectral resolution at the red-edge, a narrow spectral range between the red and near infra-red spectra, which is particularly useful for retrieving chlorophyll content.
This study explores a new refined measurement concept of combining multi-angle and hyperspectral remote sensing that employs hyperspectral signals only in the vertical (nadir) direction and multispectral measurements in two additional (off-nadir) directions within two spectral bands, red and near infra-red (NIR). The refinement has been proposed in order to reduce the redundancy of hyperspectral data at more than one angle and to better retrieve the three-dimensional vegetation structural information by choosing the two most useful angles of measurements.
To illustrate that hyperspectral data acquired at multiple angles exhibit redundancy, a radiative transfer model was used to generate off-nadir hyperspectral reflectances. It has been successfully demonstrated that the off-nadir hyperspectral simulations could be closely reconstructed based on the nadir hyperspectral reflectance and off-nadir multi-spectral reflectance in the red and NIR bands. This is shown using the Compact High-resolution Imaging Spectrometer (CHRIS) and Compact Airborne Spectrographic Imager (CASI) data acquired over a forested area in the Sudbury region (Ontario, Canada).
Through intensive validation using field data, it is demonstrated that the combination of reflectances at two angles, the hotspot and darkspot, through the Normalized Difference between Hotspot and Darkspot (NDHD) index has the strongest response to changes in vegetation clumping, an important structural component of canopy. Clumping index (Ω) and Leaf Area Index (LAI) maps are generated based on previous algorithms as well as empirical relationships developed in this study.
To retrieve chlorophyll content, inversion of the 5-Scale model is performed by developing Look-Up Tables (LUTs) that are based on the improved structural characteristics developed using multi-angle data. The generated clumping index and LAI maps are used in the LUTs to estimate leaf reflectance. Inversion of the leaf reflectance model, PROSPECT, is further employed to estimate chlorophyll content per unit leaf area. The estimated leaf chlorophyll contents are in good agreement with field-measured values. The refined measurement concept of combining hyperspectral with multispectral multi-angle data provides the opportunity for simultaneous retrieval of vegetation structural and biochemical parameters.
|
5 |
Cartographie fine de l’argile minéralogique par démélange d’images hyperspectrales à très haute résolution spatiale / Fine-scale mapping of clay mineral using unmixing of very-high resolution hyperspectral imagesDucasse, Etienne 03 April 2019 (has links)
L'étude des sols argileux fait l'objet de nombreux travaux motivés par leur rôle dans les processus d'érosion, les catastrophes naturelles et l'agriculture de précision. La caractérisation du contenu en argiles gonflantes du sol est aussi nécessaire pour évaluer la traficabilité d’une région ou le risque de retrait-gonflement des sols, responsable d’engendrer des dégâts sur le bâti. En effet, les argiles gonflantes sont des smectites qu'il faut différencier des autres types d'argiles telles que l'illite ou la kaolinite, en milieu tempéré. Les techniques traditionnelles pour réaliser la cartographie des minéraux argileux des sols sont en général couteuses, financièrement et en temps et sont basées sur des campagnes terrain intensives simultanément à des acquisitions photographiques afin de spatialiser l'information qui reste qualitative. La télédétection hyperspectrale est une technique potentiellement intéressante pour obtenir des cartes d'argile plus précises et à moindre coût. Néanmoins, elle est limitée par le fait que (i) les minéraux sont mélangés de manière intime dans les sols avec d’autres composants; mais aussi que (ii) à l’échelle aéroportée, le signal réfléchi au sein d’un pixel (résolution spatiale de l’ordre du mètre) comprend de la végétation en plus du sol nu. Ces phénomènes de mélange, aux échelles microscopique et macroscopique, rendent difficile l’estimation du contenu en argiles minéralogiques. Le développement des drones ainsi que leur possibilité d'embarquer de nouvelles caméras hyperspectrales couvrant l'ensemble du spectre [0,4 - 2,5 µm] avec une haute résolution spatiale (environ 10 cm) et un signal à bruit élevé ouvrent la voie à un inventaire plus précis des argiles.L'objectif de cette thèse est de montrer l'intérêt de l'utilisation de méthodes de démélange sur des données hyperspectrales à très haute résolution spatiale pour estimer le contenu en minéraux argileux du sol, et plus précisément des argiles responsables du retrait-gonflement, les smectites. Dans un premier temps, les méthodes existantes de détection, de caractérisation des différents types d'argile et d'estimation de leur abondance sont présentées. Les potentialités des méthodes de démélange existantes dans la littérature pour l’estimation du contenu en minéraux argileux des sols sont mises en avant. Dans un second temps, les méthodes de démélange sont utilisées sur une base de données d’images hyperspectrale acquises en laboratoire de mélanges contrôlés minéraux contenant des argiles (montmorillonite, illite, kaolinite) et d’autres minéraux présents dans les sols (quartz, calcite). Comme les minéraux sont mélangés de manière intime, des méthodes de démélange, linéaires et non-linéaires sont décrites et comparées. Néanmoins, les algorithmes non-linéaires ont des performances similaires aux algorithmes linéaires. De plus, l’effet de la variabilité des données sur la précision de l’estimation des abondances a pu être réduit en utilisant des prétraitements spectraux. Dans une dernière étape, la comparaison des méthodes de démélange sont étendues à des mesures en environnement extérieur. Cette analyse repose sur une campagne de mesure en extérieur réalisée pour la mesure d'images hyperspectrales acquises depuis une nacelle (12 m de hauteur environ, 1,5 cm de résolution spatiale), et l’acquisition d’échantillons prélevés et analysés par DRX (données quantitatives des abondances des minéraux) pour validation. Cette dernière phase permet d'analyser l'impact d'un sol naturel (composé d'un mélange minéralogique, des matières carbonées telles que la cellulose, et ayant une rugosité de surface…) sur les méthodes de démélange. Les performances obtenues (moins de 15% RMSE sur l’estimation de la montmorillonite) permettent d’ouvrir des perspectives quant à l’application de ces méthodes sur des capteurs embarqués par drone, pour la cartographie de la traficabilité et de l’aléa de retrait-gonflement des sols. / Clayey soils are studied because of the importance of soils in erosion processes, natural disasters and precision agriculture. Mapping of clay mineralogy is essential for surveying and predicting trafficability and ground instability hazards, such as shrink-swelling, in order to cope with damages caused by expansive soils on infrastructures. Clay minerals in temperate zone soils are mainly divided in smectites, which highly contribute to soil swelling, illite and kaolinite. Geotechnical engineering practice for clayey soils mapping are expensive and time-consuming. Indeed, it is based on field and extensive laboratory studies. In addition, spatial distribution of clay is assessed using aerial photographs and low-scale geological maps. Thereby, small heterogeneities in geological features are rarely detected, and spatial information remains qualitative. Hyperspectral remote sensing could be an alternative to conventional methods for clay mapping. However, this method is limited by two facts: (i) soils are an intimate mixture of minerals, and (ii) vegetation is mixed with bare soil within airborne sensors pixels (meter range of spatial resolution). Those mixtures (at microscopic and macroscopic scales) mask clays specific spectral signatures and limit clay mineral quantification. Recent development in UAV offers new possibilities for carrying hyperspectral cameras in the reflective domain [0.4 – 2.5 µm], and obtaining data with higher SNR and resolution (10 cm). These advances open new perspectives for accurate and less expensive clay maps. This PhD thesis aims to present the potentiality of clay mapping in soils using very-high spatial resolution hyperspectral data, and more specifically, to estimate swelling clay minerals (smectite) abundances. First, existing methods of detection, and abundance estimation of clay minerals are presented. Second, unmixing methods are used on a database of hyperspectral images of controlled mixtures with different abundances of clay minerals, (illite, montmorillonite and kaolinite) and other minerals existing in soils (quartz, calcite). Due to the intimate nature of mixtures, linear and non-linear unmixing methods are described and compared. However, linear and nonlinear algorithms exhibit similar performances. Moreover, the accuracy of estimation of abundances of mineral clay increased using spectral preprocessings. Regarding the third step, field measurements are used to assess clay unmixing methods. This study is based on an outdoor experiment which acquired hyperspectral images from a bucket truck (12 m elevation, 1.5 cm ground sampling distance), and a sampling collection analyzed by XRD (quantitative analysis of mineral abundances) for validation. This step analyzed effects of a natural soil, (with organic matter, a larger diversity of mineralogical components and with surface roughness) on unmixing methods tested with laboratory data. Obtained performances (less than 15% RMSE for montmorillonite estimation) allow perspectives to apply these methods on data obtained with UAV sensors, for trafficability or expansive soils mapping purposes.
|
6 |
Avaliação dos modelos de mistura espectral MESMA e SMA aplicados aos dados hiperespectrais Hyperion/EO-1 adquiridos na Planície Costeira do Rio Grande do Sul / Evaluation of MESMA and SMA mixture models applied to Hyperion/EO-1 hyperspectral data acquired on the Coastal Plain of Rio Grande do SulLinn, Rodrigo de Marsillac January 2008 (has links)
O objetivo do presente trabalho foi avaliar o uso potencial dos dados hiperespectrais do sensor orbital Hyperion/Earth Observing One (EO-1) e dos modelos de mistura espectral MESMA (Multiple Endmember Spectral Mixture Analysis) e SMA (Spectral Mixture Analysis) para discriminação de classes de cobertura da Planície Costeira do Rio Grande do Sul. O modelo MESMA difere do SMA por permitir que o número e o tipo de Membros de Referência (MRs), assim como sua abundância, variem pixel a pixel. A abordagem metodológica utilizada envolveu as seguintes etapas: (a) préprocessamento dos dados Hyperion e conversão dos valores de radiância para imagens atmosfericamente corrigidas de reflectância de superfície; (b) uso seqüencial das técnicas Minimum Noise Fraction (MNF), Pixel Purity Index (PPI) e Visualizador n- Dimensional, no intervalo de 454 a 2334 nm, para seleção inicial de um grupo de pixels candidatos a MRs (primeira biblioteca espectral) e de um outro grupo para fins de validação dos modelos; (c) uso do aplicativo VIPER (Visualization and Image Processing for Environmental Research) Tools para refinamento da primeira biblioteca espectral e seleção final dos MRs, utilizando as métricas EAR (Endmember Average RMSE), MASA (Minimum Average Spectral Angle) e CoB (Count Based Endmember Selection); (d) geração dos modelos MESMA e SMA com o VIPER Tools; e (e) comparação dos resultados dos modelos com base nas imagens-fração e nos valores de erro médio quadrático (RMSE). Os resultados obtidos mostraram que: (1) o uso seqüencial das técnicas MNF, PPI e Visualizador n-Dimensional pode constituir uma etapa inicial para identificar pixels candidatos a MRs, cuja seleção final pode ser feita com as métricas EAR, MASA e CoB. Usadas de forma combinada, essas métricas minimizam possíveis efeitos da baixa relação sinal-ruído do Hyperion; (2) os MRs selecionados representaram os principais componentes de cena como “água” (com clorofila, límpida e com sedimentos em suspensão), “vegetação verde” (pinus, eucalipto e gramíneas) e “solo” (dunas e campo seco); (3) Por utilizar número e tipo variáveis de MRs, o modelo MESMA produziu melhores resultados que o SMA. Quando aplicado sobre a imagem, sobre a amostra de validação e quando comparado com o SMA, o modelo MESMA de 4 componentes (Solo = dunas e campo Seco; vegetação verde = pinus, eucalipto e gramíneas; água = com Sedimentos em suspensão, sem Sedimentos e com clorofila; sombra) descreveu adequadamente a diversidade dos componentes de cena, incluindo materiais dentro de uma mesma classe (p.ex. pinus e eucalipto). O MESMA produziu menores valores de RMSE e uma maior quantidade de pixels modelados na cena (85% contra 55%) do que o SMA; (4) o VIPER mostrou-se uma ferramenta bastante eficaz para seleção dos MRs e geração dos modelos. Os resultados, como um todo, demonstraram o potencial da aplicação dos modelos MESMA com dados hiperespectrais do sensor Hyperion/EO-1, mesmo considerando a baixa relação sinal/ruído do instrumento, especialmente no infravermelho de ondas curtas (SWIR). / The objective of this work was to evaluate the potential use of the Hyperion/Earth Observing One (EO-1) hyperspectral data and of the MESMA (Multiple Endmember Spectral Mixture Analysis) and SMA (Spectral Mixture Analysis) mixture models to discriminate land covers in the Rio Grande do Sul state, South Brazil. MESMA differs from SMA because it may use a variable number and type of endmembers in each pixel. The methodology involved: (a) pre-processing of Hyperion data and conversion of radiance values into atmospherically corrected surface reflectance images; (b) sequential use of the Minimum Noise Fraction (MNF), Pixel Purity Index (PPI) and n- Dimensional Visualizer techniques, in the 454-2334 nm range, for initial selection of a general group of candidate endmembers (first spectral library) and of another group of pixels used for model validation; (c) use of VIPER (Visualization and Image Processing for Environmental Research) Tools algorithm for final selection of endmembers from the first spectral library and from the use of the metrics EAR (Endmember Average RMSE), MASA (Minimum Average Spectral Angle) and CoB (Count Based Endmember Selection); (d) use of VIPER tools to obtain MESMA and SMA models; and (e) comparison of modeling results based on the inspection of fraction images and root mean square error (RMSE) values. Results showed that: (1) the sequential use of the MNF, PPI and n-D Visualizer techniques may comprise an initial step to identify candidate endmembers. Final selection was performed using a combination of EAR, MASA and CoB to minimize possible effects of low signalnoise ratio (SNR) of Hyperion; (2) the selected endmembers represented major scene components such as water (with chlorophyll, clear or bearing in suspended sediments), green vegetation (pinus, eucalyptus and grasslands) and soil (dunes and dry grasslands); (3) By using a variable number and type of endmembers, MESMA produced better results than SMA. When applied over the image, the validation dataset and compared with SMA, the four-endmember MESMA model (soil = dunes and dry grasslands; green vegetation = pinus, eucalyptus and grasslands; water = with chlorophyll, clear and with suspended sediments; shadow) described adequately the diversity of the scene components, including materials within the same class (e.g., pinus and eucalyptus). MESMA produced lower RMSE values and greater number of modeled pixels (85% versus 55%) than SMA; (5) the VIPER tools seems to be an interesting approach for endmember selection and spectral mixture model generation. Results, as a whole, demonstrated the potential use of the MESMA with Hyperion/EO-1 hyperspectral data, even considering the low SNR of the instrument, especially in the shortwave infrared (SWIR).
|
7 |
Refining the Concept of Combining Hyperspectral and Multi-angle Sensors for Land Surface ApplicationsSimic, Anita 08 March 2011 (has links)
Assessment of leaf and canopy chlorophyll content provides information on plant physiological status; it is related to nitrogen content and hence, photosynthesis process, net primary productivity and carbon budget. In this study, a method is developed for the retrieval of total chlorophyll content (Chlorophyll a+b) per unit leaf and per unit ground area based on improved vegetation structural parameters which are derived using multispectral multi-angle remote sensing data. Structural characteristics such as clumping and gaps within a canopy affect its solar radiation absorption and distribution and impact its reflected radiance acquired by a sensor. One of the main challenges for the remote sensing community is to accurately estimate vegetation structural parameters, which inevitably influence the retrieval of leaf chlorophyll content. Multi-angle optical measurements provide a means to characterize the anisotropy of surface reflectance, which has been shown to contain information on vegetation structural characteristics. Hyperspectral optical measurements, on the other hand, provide a fine spectral resolution at the red-edge, a narrow spectral range between the red and near infra-red spectra, which is particularly useful for retrieving chlorophyll content.
This study explores a new refined measurement concept of combining multi-angle and hyperspectral remote sensing that employs hyperspectral signals only in the vertical (nadir) direction and multispectral measurements in two additional (off-nadir) directions within two spectral bands, red and near infra-red (NIR). The refinement has been proposed in order to reduce the redundancy of hyperspectral data at more than one angle and to better retrieve the three-dimensional vegetation structural information by choosing the two most useful angles of measurements.
To illustrate that hyperspectral data acquired at multiple angles exhibit redundancy, a radiative transfer model was used to generate off-nadir hyperspectral reflectances. It has been successfully demonstrated that the off-nadir hyperspectral simulations could be closely reconstructed based on the nadir hyperspectral reflectance and off-nadir multi-spectral reflectance in the red and NIR bands. This is shown using the Compact High-resolution Imaging Spectrometer (CHRIS) and Compact Airborne Spectrographic Imager (CASI) data acquired over a forested area in the Sudbury region (Ontario, Canada).
Through intensive validation using field data, it is demonstrated that the combination of reflectances at two angles, the hotspot and darkspot, through the Normalized Difference between Hotspot and Darkspot (NDHD) index has the strongest response to changes in vegetation clumping, an important structural component of canopy. Clumping index (Ω) and Leaf Area Index (LAI) maps are generated based on previous algorithms as well as empirical relationships developed in this study.
To retrieve chlorophyll content, inversion of the 5-Scale model is performed by developing Look-Up Tables (LUTs) that are based on the improved structural characteristics developed using multi-angle data. The generated clumping index and LAI maps are used in the LUTs to estimate leaf reflectance. Inversion of the leaf reflectance model, PROSPECT, is further employed to estimate chlorophyll content per unit leaf area. The estimated leaf chlorophyll contents are in good agreement with field-measured values. The refined measurement concept of combining hyperspectral with multispectral multi-angle data provides the opportunity for simultaneous retrieval of vegetation structural and biochemical parameters.
|
8 |
Avaliação dos modelos de mistura espectral MESMA e SMA aplicados aos dados hiperespectrais Hyperion/EO-1 adquiridos na Planície Costeira do Rio Grande do Sul / Evaluation of MESMA and SMA mixture models applied to Hyperion/EO-1 hyperspectral data acquired on the Coastal Plain of Rio Grande do SulLinn, Rodrigo de Marsillac January 2008 (has links)
O objetivo do presente trabalho foi avaliar o uso potencial dos dados hiperespectrais do sensor orbital Hyperion/Earth Observing One (EO-1) e dos modelos de mistura espectral MESMA (Multiple Endmember Spectral Mixture Analysis) e SMA (Spectral Mixture Analysis) para discriminação de classes de cobertura da Planície Costeira do Rio Grande do Sul. O modelo MESMA difere do SMA por permitir que o número e o tipo de Membros de Referência (MRs), assim como sua abundância, variem pixel a pixel. A abordagem metodológica utilizada envolveu as seguintes etapas: (a) préprocessamento dos dados Hyperion e conversão dos valores de radiância para imagens atmosfericamente corrigidas de reflectância de superfície; (b) uso seqüencial das técnicas Minimum Noise Fraction (MNF), Pixel Purity Index (PPI) e Visualizador n- Dimensional, no intervalo de 454 a 2334 nm, para seleção inicial de um grupo de pixels candidatos a MRs (primeira biblioteca espectral) e de um outro grupo para fins de validação dos modelos; (c) uso do aplicativo VIPER (Visualization and Image Processing for Environmental Research) Tools para refinamento da primeira biblioteca espectral e seleção final dos MRs, utilizando as métricas EAR (Endmember Average RMSE), MASA (Minimum Average Spectral Angle) e CoB (Count Based Endmember Selection); (d) geração dos modelos MESMA e SMA com o VIPER Tools; e (e) comparação dos resultados dos modelos com base nas imagens-fração e nos valores de erro médio quadrático (RMSE). Os resultados obtidos mostraram que: (1) o uso seqüencial das técnicas MNF, PPI e Visualizador n-Dimensional pode constituir uma etapa inicial para identificar pixels candidatos a MRs, cuja seleção final pode ser feita com as métricas EAR, MASA e CoB. Usadas de forma combinada, essas métricas minimizam possíveis efeitos da baixa relação sinal-ruído do Hyperion; (2) os MRs selecionados representaram os principais componentes de cena como “água” (com clorofila, límpida e com sedimentos em suspensão), “vegetação verde” (pinus, eucalipto e gramíneas) e “solo” (dunas e campo seco); (3) Por utilizar número e tipo variáveis de MRs, o modelo MESMA produziu melhores resultados que o SMA. Quando aplicado sobre a imagem, sobre a amostra de validação e quando comparado com o SMA, o modelo MESMA de 4 componentes (Solo = dunas e campo Seco; vegetação verde = pinus, eucalipto e gramíneas; água = com Sedimentos em suspensão, sem Sedimentos e com clorofila; sombra) descreveu adequadamente a diversidade dos componentes de cena, incluindo materiais dentro de uma mesma classe (p.ex. pinus e eucalipto). O MESMA produziu menores valores de RMSE e uma maior quantidade de pixels modelados na cena (85% contra 55%) do que o SMA; (4) o VIPER mostrou-se uma ferramenta bastante eficaz para seleção dos MRs e geração dos modelos. Os resultados, como um todo, demonstraram o potencial da aplicação dos modelos MESMA com dados hiperespectrais do sensor Hyperion/EO-1, mesmo considerando a baixa relação sinal/ruído do instrumento, especialmente no infravermelho de ondas curtas (SWIR). / The objective of this work was to evaluate the potential use of the Hyperion/Earth Observing One (EO-1) hyperspectral data and of the MESMA (Multiple Endmember Spectral Mixture Analysis) and SMA (Spectral Mixture Analysis) mixture models to discriminate land covers in the Rio Grande do Sul state, South Brazil. MESMA differs from SMA because it may use a variable number and type of endmembers in each pixel. The methodology involved: (a) pre-processing of Hyperion data and conversion of radiance values into atmospherically corrected surface reflectance images; (b) sequential use of the Minimum Noise Fraction (MNF), Pixel Purity Index (PPI) and n- Dimensional Visualizer techniques, in the 454-2334 nm range, for initial selection of a general group of candidate endmembers (first spectral library) and of another group of pixels used for model validation; (c) use of VIPER (Visualization and Image Processing for Environmental Research) Tools algorithm for final selection of endmembers from the first spectral library and from the use of the metrics EAR (Endmember Average RMSE), MASA (Minimum Average Spectral Angle) and CoB (Count Based Endmember Selection); (d) use of VIPER tools to obtain MESMA and SMA models; and (e) comparison of modeling results based on the inspection of fraction images and root mean square error (RMSE) values. Results showed that: (1) the sequential use of the MNF, PPI and n-D Visualizer techniques may comprise an initial step to identify candidate endmembers. Final selection was performed using a combination of EAR, MASA and CoB to minimize possible effects of low signalnoise ratio (SNR) of Hyperion; (2) the selected endmembers represented major scene components such as water (with chlorophyll, clear or bearing in suspended sediments), green vegetation (pinus, eucalyptus and grasslands) and soil (dunes and dry grasslands); (3) By using a variable number and type of endmembers, MESMA produced better results than SMA. When applied over the image, the validation dataset and compared with SMA, the four-endmember MESMA model (soil = dunes and dry grasslands; green vegetation = pinus, eucalyptus and grasslands; water = with chlorophyll, clear and with suspended sediments; shadow) described adequately the diversity of the scene components, including materials within the same class (e.g., pinus and eucalyptus). MESMA produced lower RMSE values and greater number of modeled pixels (85% versus 55%) than SMA; (5) the VIPER tools seems to be an interesting approach for endmember selection and spectral mixture model generation. Results, as a whole, demonstrated the potential use of the MESMA with Hyperion/EO-1 hyperspectral data, even considering the low SNR of the instrument, especially in the shortwave infrared (SWIR).
|
9 |
Avaliação dos modelos de mistura espectral MESMA e SMA aplicados aos dados hiperespectrais Hyperion/EO-1 adquiridos na Planície Costeira do Rio Grande do Sul / Evaluation of MESMA and SMA mixture models applied to Hyperion/EO-1 hyperspectral data acquired on the Coastal Plain of Rio Grande do SulLinn, Rodrigo de Marsillac January 2008 (has links)
O objetivo do presente trabalho foi avaliar o uso potencial dos dados hiperespectrais do sensor orbital Hyperion/Earth Observing One (EO-1) e dos modelos de mistura espectral MESMA (Multiple Endmember Spectral Mixture Analysis) e SMA (Spectral Mixture Analysis) para discriminação de classes de cobertura da Planície Costeira do Rio Grande do Sul. O modelo MESMA difere do SMA por permitir que o número e o tipo de Membros de Referência (MRs), assim como sua abundância, variem pixel a pixel. A abordagem metodológica utilizada envolveu as seguintes etapas: (a) préprocessamento dos dados Hyperion e conversão dos valores de radiância para imagens atmosfericamente corrigidas de reflectância de superfície; (b) uso seqüencial das técnicas Minimum Noise Fraction (MNF), Pixel Purity Index (PPI) e Visualizador n- Dimensional, no intervalo de 454 a 2334 nm, para seleção inicial de um grupo de pixels candidatos a MRs (primeira biblioteca espectral) e de um outro grupo para fins de validação dos modelos; (c) uso do aplicativo VIPER (Visualization and Image Processing for Environmental Research) Tools para refinamento da primeira biblioteca espectral e seleção final dos MRs, utilizando as métricas EAR (Endmember Average RMSE), MASA (Minimum Average Spectral Angle) e CoB (Count Based Endmember Selection); (d) geração dos modelos MESMA e SMA com o VIPER Tools; e (e) comparação dos resultados dos modelos com base nas imagens-fração e nos valores de erro médio quadrático (RMSE). Os resultados obtidos mostraram que: (1) o uso seqüencial das técnicas MNF, PPI e Visualizador n-Dimensional pode constituir uma etapa inicial para identificar pixels candidatos a MRs, cuja seleção final pode ser feita com as métricas EAR, MASA e CoB. Usadas de forma combinada, essas métricas minimizam possíveis efeitos da baixa relação sinal-ruído do Hyperion; (2) os MRs selecionados representaram os principais componentes de cena como “água” (com clorofila, límpida e com sedimentos em suspensão), “vegetação verde” (pinus, eucalipto e gramíneas) e “solo” (dunas e campo seco); (3) Por utilizar número e tipo variáveis de MRs, o modelo MESMA produziu melhores resultados que o SMA. Quando aplicado sobre a imagem, sobre a amostra de validação e quando comparado com o SMA, o modelo MESMA de 4 componentes (Solo = dunas e campo Seco; vegetação verde = pinus, eucalipto e gramíneas; água = com Sedimentos em suspensão, sem Sedimentos e com clorofila; sombra) descreveu adequadamente a diversidade dos componentes de cena, incluindo materiais dentro de uma mesma classe (p.ex. pinus e eucalipto). O MESMA produziu menores valores de RMSE e uma maior quantidade de pixels modelados na cena (85% contra 55%) do que o SMA; (4) o VIPER mostrou-se uma ferramenta bastante eficaz para seleção dos MRs e geração dos modelos. Os resultados, como um todo, demonstraram o potencial da aplicação dos modelos MESMA com dados hiperespectrais do sensor Hyperion/EO-1, mesmo considerando a baixa relação sinal/ruído do instrumento, especialmente no infravermelho de ondas curtas (SWIR). / The objective of this work was to evaluate the potential use of the Hyperion/Earth Observing One (EO-1) hyperspectral data and of the MESMA (Multiple Endmember Spectral Mixture Analysis) and SMA (Spectral Mixture Analysis) mixture models to discriminate land covers in the Rio Grande do Sul state, South Brazil. MESMA differs from SMA because it may use a variable number and type of endmembers in each pixel. The methodology involved: (a) pre-processing of Hyperion data and conversion of radiance values into atmospherically corrected surface reflectance images; (b) sequential use of the Minimum Noise Fraction (MNF), Pixel Purity Index (PPI) and n- Dimensional Visualizer techniques, in the 454-2334 nm range, for initial selection of a general group of candidate endmembers (first spectral library) and of another group of pixels used for model validation; (c) use of VIPER (Visualization and Image Processing for Environmental Research) Tools algorithm for final selection of endmembers from the first spectral library and from the use of the metrics EAR (Endmember Average RMSE), MASA (Minimum Average Spectral Angle) and CoB (Count Based Endmember Selection); (d) use of VIPER tools to obtain MESMA and SMA models; and (e) comparison of modeling results based on the inspection of fraction images and root mean square error (RMSE) values. Results showed that: (1) the sequential use of the MNF, PPI and n-D Visualizer techniques may comprise an initial step to identify candidate endmembers. Final selection was performed using a combination of EAR, MASA and CoB to minimize possible effects of low signalnoise ratio (SNR) of Hyperion; (2) the selected endmembers represented major scene components such as water (with chlorophyll, clear or bearing in suspended sediments), green vegetation (pinus, eucalyptus and grasslands) and soil (dunes and dry grasslands); (3) By using a variable number and type of endmembers, MESMA produced better results than SMA. When applied over the image, the validation dataset and compared with SMA, the four-endmember MESMA model (soil = dunes and dry grasslands; green vegetation = pinus, eucalyptus and grasslands; water = with chlorophyll, clear and with suspended sediments; shadow) described adequately the diversity of the scene components, including materials within the same class (e.g., pinus and eucalyptus). MESMA produced lower RMSE values and greater number of modeled pixels (85% versus 55%) than SMA; (5) the VIPER tools seems to be an interesting approach for endmember selection and spectral mixture model generation. Results, as a whole, demonstrated the potential use of the MESMA with Hyperion/EO-1 hyperspectral data, even considering the low SNR of the instrument, especially in the shortwave infrared (SWIR).
|
10 |
Caracterização espectral de espécies de Mata Atlântica de Interior em nível foliar e de copa / Spectral characterization of species from Mata Atlântica de Interior in canopy and leaf levelMiyoshi, Gabriela Takahashi [UNESP] 29 February 2016 (has links)
Submitted by GABRIELA TAKAHASHI MIYOSHI null (takahashi.gabi@gmail.com) on 2016-03-24T18:48:17Z
No. of bitstreams: 1
MIYOSHI_GT_DISSERTACAO.pdf: 6445481 bytes, checksum: 7e46eb0d4d485bf0b3f7498d99fe9d65 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-03-24T20:29:25Z (GMT) No. of bitstreams: 1
miyoshi_gt_me_prud.pdf: 6445481 bytes, checksum: 7e46eb0d4d485bf0b3f7498d99fe9d65 (MD5) / Made available in DSpace on 2016-03-24T20:29:25Z (GMT). No. of bitstreams: 1
miyoshi_gt_me_prud.pdf: 6445481 bytes, checksum: 7e46eb0d4d485bf0b3f7498d99fe9d65 (MD5)
Previous issue date: 2016-02-29 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Florestas têm importante papel na manutenção da biodiversidade, retenção de carbono e regulação do regime hidrológico, além de garantir proteção ao solo e às fontes d’água. Podem ser classificadas em diferentes estádios de desenvolvimento, caracterizados pela presença de espécies secundárias e clímax. Atualmente, no Brasil, as florestas estão reduzidas em fragmentos espalhados em diversas regiões do país sendo seu monitoramento necessário para realização de planos de manejo. Uma das formas de realizar o monitoramento florestal é utilizando o Sensoriamento Remoto hiperespectral, que fornece informação espectral detalhada dos alvos as quais são úteis para a discriminação das espécies de vegetação que compõem o remanescente florestal. Sensores hiperespectrais acoplados a VANTs (Veículos Aéreos Não Tripulados) possibilitam a aquisição de dados para posterior delimitação das copas das espécies de vegetação. A Mata Atlântica, bioma rico em biodiversidade, está distribuída de norte a sul do Brasil, sendo classificada conforme a localização e características de cada formação florestal, dentre elas a Mata Atlântica de Interior. O objetivo desse trabalho é a caracterização espectral de espécies de vegetação em nível foliar e de copa para contribuir com informações que possam ser utilizadas para o monitoramento florestal. Foram adquiridas imagens hiperespectrais com câmara baseada no Interferômetro de Fabry-Perot acoplada em VANT. As imagens foram adquiridas na gleba Ponte Branca, pertencente à Estação Ecológica Mico-Leão-Preto. O processamento das imagens considerou 5 diferentes correções que permitiram mostrar a importância da geometria de aquisição das imagens e do ajustamento radiométrico em bloco. Copas de 12 espécies de vegetação foram delimitadas manualmente no mosaico de imagens gerado e nelas foram medidos valores de Fator de Reflectância Hemisférico Cônico. A caracterização espectral em nível foliar de 16 espécies de vegetação foi realizada em laboratório utilizando espectrorradiômetro. Por meio da análise de agrupamento, verificou-se a similaridade entre as respostas espectrais de tais espécies, tanto em nível de copa como foliar. Para minimizar a similaridade entre tais respostas, foram aplicados e normalizados 7 índices de vegetação. Por fim, utilizando os índices que apresentaram menor correlação entre si, uma nova análise de agrupamento foi realizada onde se verificou que a similaridade entre as espécies foi atenuada. / Forests have an important role to support biodiversity, carbon stocks and water regime. In addition, provide fundamental protection to soil and water resources. Pioneers and climax species characterize successional stages of forest. In Brazil, forests are reduced to fragments spread out over the country, being their monitoring necessary to perform management plans. Hyperspectral Remote Sensing provides detailed spectral information about targets and is feasible to discriminate trees species. Hyperspectral sensor attached to UAVs (Unmanned Aerial Vehicles) makes possible the delineation of trees canopies. The Atlantic Forest, biome rich in biodiversity, is distributed from north to south in Brazil, being classified according to the different locations and characteristics, such as the Interior Atlantic Forest. The main objective of this project is spectral characterization of tree species in leaf and canopy level to contribute with forest monitoring. Hyperspectral images acquired with camera based on Fabry-Perot Interferometer coupled to an UAV were acquired. The interest area, Ponte Branca, belongs to the ecological station called Estação Ecológica Mico-Leão-Preto in the western region of São Paulo State. Imaging process where realized with 5 different corrections showing the importance of geometry during image acquisition and radiometric block adjustment. Trees canopies from 12 species were manually delimited in the images mosaic and Hemispherical Conical Reflectance Factor were obtained. Leaf spectral characterization was realized in laboratory using spectrorradiometer. Clustering analyses were applied to verify similarity between spectral responses of species, in canopy and leaf level. 7 vegetation indexes were applied and normalized in order to reduce the similarity between the spectral responses. Lastly, a new clustering analyses was realized using the less correlated normalized indexes, concluding that the similarity between species was reduced. / CNPq: 130871/2014-1
|
Page generated in 0.0819 seconds