• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hardware/Software Co-Verification Using the SystemVerilog DPI

Freitas, Arthur 08 June 2007 (has links) (PDF)
During the design and verification of the Hyperstone S5 flash memory controller, we developed a highly effective way to use the SystemVerilog direct programming interface (DPI) to integrate an instruction set simulator (ISS) and a software debugger in logic simulation. The processor simulation was performed by the ISS, while all other hardware components were simulated in the logic simulator. The ISS integration allowed us to filter many of the bus accesses out of the logic simulation, accelerating runtime drastically. The software debugger integration freed both hardware and software engineers to work in their chosen development environments. Other benefits of this approach include testing and integrating code earlier in the design cycle and more easily reproducing, in simulation, problems found in FPGA prototypes.
2

Hardware/Software Co-Verification Using the SystemVerilog DPI

Freitas, Arthur 08 June 2007 (has links)
During the design and verification of the Hyperstone S5 flash memory controller, we developed a highly effective way to use the SystemVerilog direct programming interface (DPI) to integrate an instruction set simulator (ISS) and a software debugger in logic simulation. The processor simulation was performed by the ISS, while all other hardware components were simulated in the logic simulator. The ISS integration allowed us to filter many of the bus accesses out of the logic simulation, accelerating runtime drastically. The software debugger integration freed both hardware and software engineers to work in their chosen development environments. Other benefits of this approach include testing and integrating code earlier in the design cycle and more easily reproducing, in simulation, problems found in FPGA prototypes.

Page generated in 0.5832 seconds