Spelling suggestions: "subject:"hypokinetic dysarthria"" "subject:"cytokinetic dysarthria""
11 |
Výzkum řečových příznaků hodnotících diadochokinetické (DDK) úlohy / Research of speech features quantifying diadochokinetic (DDK) tasksKukučka, Peter January 2014 (has links)
Speech processing methods were studied to calculate parameters of pacient with Parkinon's disease. Main focus of this work is to examine diadochokinetic (DDK) tests. Algorithm for parameters extraction was proposed. It works in more parts. DC is removed from speech signal, preemphasis aplicated. Envelope of input signal is calculated, peaks of syllables are detected. Parameters and statistical results of Mann-Whitney U~test are calculated from detected peaks. Proposed algorithm is implemented in Matlab.
|
12 |
Analýza Parkinsonovy nemoci pomocí segmentálních řečových příznaků / Analysis of Parkinson's disease using segmental speech parametersMračko, Peter January 2015 (has links)
This project describes design of the system for diagnosis Parkinson’s disease based on speech. Parkinson’s disease is a neurodegenerative disorder of the central nervous system. One of the symptoms of this disease is disability of motor aspects of speech, called hypokinetic dysarthria. Design of the system in this work is based on the best known segmental features such as coefficients LPC, PLP, MFCC, LPCC but also less known such as CMS, ACW and MSC. From speech records of patients affected by Parkinson’s disease and also healthy controls are calculated these coefficients, further is performed a selection process and subsequent classification. The best result, which was obtained in this project reached classification accuracy 77,19%, sensitivity 74,69% and specificity 78,95%.
|
13 |
Odhad progrese Parkinsonovy nemoci pomocí akustické analýzy řeči / Degree of Parkinson's disease estimation based on acoustic analysis of speechUstohalová, Iveta January 2016 (has links)
The diploma thesis deals with the non-invasive analysis of progression of Parkinson´s disease using the acoustic analysis of speach. Hypokinetic dysarthria in connection with Parkinson´s disease as well as speech parameters are described in this work. Speech parameters are sorted according to the speech component they affect. The work uses the phonation of vowels "a" speech task as the most commonly used speech task in the field of pathological speech processing, because of its resistance to demographic and linguistic characteristics of the speakers. Based on obtained knowledge, in MATLAB development enviroment were created systém for UPDRS III scale estimation. The UPDRS III scale is based on subjective diagnosis given by the doctor. At first, one individual parameter is used for the UPDRS III scale value estimation. Then the feature selection using SFFS algorithm is applied to gain feature combination with minimal estimation errror. Attention i salso paid to correlation between individual symptoms and UPDSR III scale.
|
14 |
Hodnocení Parkinsonovy nemoci na základě akustické analýzy hypokinetické dysartrie / Assessment of Parkinson’s Disease Based on Acoustic Analysis of Hypokinetic DysarthriaGaláž, Zoltán January 2018 (has links)
Hypokinetická dysartrie (HD) je častým symptomem vyskytujícím se až u 90% pacientů trpících idiopatickou Parkinsonovou nemocí (PN), která výrazně přispívá k nepřirozenosti a nesrozumitelnosti řeči těchto pacientů. Hlavním cílem této disertační práce je prozkoumat možnosti použití kvantitativní paraklinické analýzy HD, s použitím parametrizace řeči, statistického zpracování a strojového učení, za účelem diagnózy a objektivního hodnocení PN. Tato práce dokazuje, že počítačová akustická analýza je schopná dostatečně popsat HD, speciálně tzv. dysprozodii, která se projevuje nedokonalou intonací a nepřirozeným tempem řeči. Navíc také dokazuje, že použití klinicky interpretovatelných akustických parametrů kvantifikujících různé aspekty HD, jako jsou fonace, artikulace a prozodie, může být použito k objektivnímu posouzení závažnosti motorických a nemotorických symptomů vyskytujících se u pacientů s PN. Dále tato práce prezentuje výzkum společných patofyziologických mechanizmů stojících za HD a zárazy v chůzi při PN. Nakonec tato práce dokazuje, že akustická analýza HD může být použita pro odhad progrese zárazů v chůzi v horizontu dvou let.
|
15 |
Analýza řečových promluv pro IT diagnostiku neurologických onemocnění / Analysis of Speech Signals for the Purpose of Neurological Disorders IT DiagnosisMekyska, Jiří January 2014 (has links)
This work deals with a design of hypokinetic dysarthria analysis system. Hypokinetic dysarthria is a speech motor dysfunction that is present in approx. 90 % of patients with Parkinson’s disease. The work is mainly focused on parameterization techniques that can be used to diagnose or monitor this disease as well as estimate its progress. Next, features that significantly correlate with subjective tests are found. These features can be used to estimate scores of different scales like Unified Parkinson’s Disease Rating Scale (UPDRS) or Mini–Mental State Examination (MMSE). A protocol of dysarthric speech acquisition is introduced in this work too. In combination with acoustic analysis it can be used to estimate a grade of hypokinetic dysarthria in fields of faciokinesis, phonorespiration and phonetics (correlation with 3F test). Regarding the parameterization, features based on modulation spectrum, inferior colliculus coefficients, bicepstrum, approximate and sample entropy, empirical mode decomposition and singular points are originally introduced in this work. All the designed techniques are integrated into the system concept in way that it can be implemented in a hospital and used for a research on Parkinson’s disease or its evaluation.
|
16 |
Aplikace statistické analýzy řeči pacientů s Parkinsonovou nemocí / Application of statistical analysis of speech in patients with Parkinson's diseaseBijota, Jan January 2016 (has links)
This thesis deals with speech analysis of people who suffer from Parkinson’s disease. Purpose of this thesis is to obtain statistical sample of speech parameters which helps to determine if examined person is suffering from Parkinson’s disease. Statistical sample is based on hypokinetic dysarthria detection. For speech signal pre-processing DC-offset removal and pre-emphasis are used. The next step is to divide signal into frames. Phonation parameters, MFCC and PLP coefficients are used for characterization of framed speech signal. After parametrization the speech signal can be analyzed by statistical methods. For statistical analysis in this thesis Spearman’s and Pearson’s correlation coefficients, mutual information, Mann-Whitney U test and Student’s t-test are used. The thesis results are the groups of speech parameters for individual long czech vowels which are the best indicator of the difference between healthy person and patient suffering from Parkinson’s disease. These result can be helpful in medical diagnosis of a patient.
|
17 |
Vývoj moderních akustických parametrů kvantifikujících hypokinetickou dysartrii / Development of modern acoustic features quantifying hypokinetic dysarthriaKowolowski, Alexander January 2019 (has links)
This work deals with designing and testing of new acoustic features for analysis of dysprosodic speech occurring in hypokinetic dysarthria patients. 41 new features for dysprosody quantification (describing melody, loudness, rhythm and pace) are presented and tested in this work. New features can be divided into 7 groups. Inside the groups, features vary by the used statistical values. First four groups are based on absolute differences and cumulative sums of fundamental frequency and short-time energy of the signal. Fifth group contains features based on multiples of this fundamental frequency and short-time energy combined into one global intonation feature. Sixth group contains global time features, which are made of divisions between conventional rhythm and pace features. Last group contains global features for quantification of whole dysprosody, made of divisions between global intonation and global time features. All features were tested on Czech Parkinsonian speech database PARCZ. First, kernel density estimation was made and plotted for all features. Then correlation analysis with medicinal metadata was made, first for all the features, then for global features only. Next classification and regression analysis were made, using classification and regression trees algorithm (CART). This analysis was first made for all the features separately, then for all the data at once and eventually a sequential floating feature selection was made, to find out the best fitting combination of features for the current matter. Even though none of the features emerged as a universal best, there were a few features, that were appearing as one of the best repeatedly and also there was a trend that there was a bigger drop between the best and the second best feature, marking it as a much better feature for the given matter, than the rest of the tested. Results are included in the conclusion together with the discussion.
|
18 |
Moderní řečové příznaky používané při diagnóze chorob / State of the art speech features used during the Parkinson disease diagnosisBílý, Ondřej January 2011 (has links)
This work deals with the diagnosis of Parkinson's disease by analyzing the speech signal. At the beginning of this work there is described speech signal production. The following is a description of the speech signal analysis, its preparation and subsequent feature extraction. Next there is described Parkinson's disease and change of the speech signal by this disability. The following describes the symptoms, which are used for the diagnosis of Parkinson's disease (FCR, VSA, VOT, etc.). Another part of the work deals with the selection and reduction symptoms using the learning algorithms (SVM, ANN, k-NN) and their subsequent evaluation. In the last part of the thesis is described a program to count symptoms. Further is described selection and the end evaluated all the result.
|
Page generated in 0.0676 seconds