Spelling suggestions: "subject:"hypothesentests"" "subject:"hypothesentest""
1 |
The 3σ-rule for outlier detection from the viewpoint of geodetic adjustmentLehmann, Rüdiger 21 January 2015 (has links) (PDF)
The so-called 3σ-rule is a simple and widely used heuristic for outlier detection. This term is a generic term of some statistical hypothesis tests whose test statistics are known as normalized or studentized residuals. The conditions, under which this rule is statistically substantiated, were analyzed, and the extent it applies to geodetic least-squares adjustment was investigated. Then, the efficiency or non-efficiency of this method was analyzed and demonstrated on the example of repeated observations. / Die sogenannte 3σ-Regel ist eine einfache und weit verbreitete Heuristik für die Ausreißererkennung. Sie ist ein Oberbegriff für einige statistische Hypothesentests, deren Teststatistiken als normierte oder studentisierte Verbesserungen bezeichnet werden. Die Bedingungen, unter denen diese Regel statistisch begründet ist, werden analysiert. Es wird untersucht, inwieweit diese Regel auf geodätische Ausgleichungsprobleme anwendbar ist. Die Effizienz oder Nichteffizienz dieser Methode wird analysiert und demonstriert am Beispiel von Wiederholungsmessungen.
|
2 |
The 3σ-rule for outlier detection from the viewpoint of geodetic adjustmentLehmann, Rüdiger January 2013 (has links)
The so-called 3σ-rule is a simple and widely used heuristic for outlier detection. This term is a generic term of some statistical hypothesis tests whose test statistics are known as normalized or studentized residuals. The conditions, under which this rule is statistically substantiated, were analyzed, and the extent it applies to geodetic least-squares adjustment was investigated. Then, the efficiency or non-efficiency of this method was analyzed and demonstrated on the example of repeated observations. / Die sogenannte 3σ-Regel ist eine einfache und weit verbreitete Heuristik für die Ausreißererkennung. Sie ist ein Oberbegriff für einige statistische Hypothesentests, deren Teststatistiken als normierte oder studentisierte Verbesserungen bezeichnet werden. Die Bedingungen, unter denen diese Regel statistisch begründet ist, werden analysiert. Es wird untersucht, inwieweit diese Regel auf geodätische Ausgleichungsprobleme anwendbar ist. Die Effizienz oder Nichteffizienz dieser Methode wird analysiert und demonstriert am Beispiel von Wiederholungsmessungen.
|
Page generated in 0.0831 seconds