• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Role of Sirtuin 1 in the Pulmonary Vascular Response to Chronic Hypoxia-Induced Pulmonary Hypertension

Taha, Mohamad 25 April 2018 (has links)
Background: Pulmonary arterial hypertension (PAH) is a devastating disease characterized by increased pulmonary artery pressure, leading to right ventricle hypertrophy and ultimately heart failure and death. Sirtuin 1 (SIRT1) is an NAD+ dependent protein deacetylase that has been strongly implicated as a crucial link between longevity, stress response and maintenance of vascular health. In this thesis, we investigated the role of SIRT1 in the pulmonary vascular hypoxic response and the pathogenesis of pulmonary hypertension (PH) working under the hypothesis that SIRT1 plays a protective role in the pulmonary vasculature and that lack of SIRT1 would lead to worsening of PH in a model of chronic hypoxia (CH). Results: We determined that global SIRT1 knockout or SIRT1 catalytic inactivation resulted in a marked increase in right ventricle pressure and remodeling compared to wildtype mice in CH. Furthermore, hypoxia-induced erythrocytosis and pulmonary vascular remodeling were profoundly increased in both SIRT1 mouse lines. Subsequent molecular assessment revealed that SIRT1 knockout, but not inactivation, led to a significant increase in mRNA levels of hypoxia inducible factor (HIF)-1α and significantly higher activity in hypoxia, leading to elevated lactate dehydrogenase A (LDHA) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) in the lungs. Interestingly, both knockout and inactivation of SIRT1 enhanced the activity of HIF2α in the hypoxic lungs and kidneys, leading to increased erythropoietin (EPO) and plasminogen activator inhibitor-1 (PAI-1). Moreover, SIRT1 knockout or inactivation was associated with a trend towards hypoxic-independent increases in HIF3α mRNA in the lungs. Prevention of glycolytic shift using dichloroacetate (DCA) did not result in improvement in this model, yet resveratrol (RSV), a SIRT1 activator/mimic, partially prevented PH only in absence of SIRT1 activity. Finally, selective endothelial cell SIRT1 deletion was sufficient to cause worse PH in the CH model. Conclusions: SIRT1 plays a protective role in the hypoxic response through transcriptional and non-transcriptional control of the hypoxia inducible factors, thus protecting against worse hypoxia-induced PH. SIRT1 could be a novel target for future therapies in PAH.
2

HYPOXIC INDUCTION AND THE ROLE OF HIFS IN THE ACTIVATION OF LUCIFERASE CONSTITUTIVE REPORTERS IN PLACENTAL STEM CELLS

Doran, Diane Michelle 02 October 2007 (has links)
No description available.
3

The Role of Von Hippel-Lindau Protein in the Glomerulus

Ding, Mei 15 April 2010 (has links)
Rapidly progressive glomerulonephritis (RPGN) is a clinical syndrome characterized by loss of renal function within days to weeks and by glomerular crescents on biopsy. The pathogenesis of this disease is unclear, but circulating factors such as antineutrophil cytoplasmic antibodies (ANCA) are believed to play a major role. In this thesis, we show that deletion of the Von Hippel-Lindau gene (Vhlh) from intrinsic glomerular cells of mice is sufficient to initiate a necrotizing crescentic glomerulonephritis and the clinical features that accompany RPGN. Loss of Vhlh leads to stabilization of hypoxia-inducible factor alpha subunits (HIFαs). Using gene expression profiling, we identified de novo expression of the HIFα target gene Cxcr4. In glomeruli from mice with RPGN, the course of RPGN is markedly improved in mice treated with a blocking antibody to Cxcr4, whereas overexpression of Cxcr4 alone in podocytes of transgenic mice is sufficient to cause glomerular disease. Despite the development of glomerular disease in mice that overexpress Cxcr4, their disease was milder and lacked features of full-blown RPGN. The Vhlh gene encodes VHL protein (pVHL, product of the Von Hippel-Lindau gene) that functions as the substrate recognition component of an E3 ubiquitin ligase. Although HIFα subunits are the best characterized substrates for pVHL, additional non-HIF mediated targets have been identified. To determine the role of HIF stabilization in this RPGN model, we generated double mutants that lack aryl hydrocarbon receptor nuclear translocator gene (Arnt, also called HIF1beta), an obligate dimerization partner for HIFα subunit function. Podocyte-selective deletion of Arnt in Vhlh mutant mice completely rescued the RPGN phenotype and mice survived longer than 8 months of age. Furthermore, stabilization of HIF2α alone led to glomerular disease characterized by crescentic transformation. Collectively, these results indicate an alternative mechanism for the pathogenesis of RPGN and glomerular disease in an animal model and suggest novel molecular pathways for intervention in this disease. In addition, we demonstrate a key role for VHL-HIF-Cxcr4 molecular pathway for the integrity of the glomerular barrier.
4

The Role of Von Hippel-Lindau Protein in the Glomerulus

Ding, Mei 15 April 2010 (has links)
Rapidly progressive glomerulonephritis (RPGN) is a clinical syndrome characterized by loss of renal function within days to weeks and by glomerular crescents on biopsy. The pathogenesis of this disease is unclear, but circulating factors such as antineutrophil cytoplasmic antibodies (ANCA) are believed to play a major role. In this thesis, we show that deletion of the Von Hippel-Lindau gene (Vhlh) from intrinsic glomerular cells of mice is sufficient to initiate a necrotizing crescentic glomerulonephritis and the clinical features that accompany RPGN. Loss of Vhlh leads to stabilization of hypoxia-inducible factor alpha subunits (HIFαs). Using gene expression profiling, we identified de novo expression of the HIFα target gene Cxcr4. In glomeruli from mice with RPGN, the course of RPGN is markedly improved in mice treated with a blocking antibody to Cxcr4, whereas overexpression of Cxcr4 alone in podocytes of transgenic mice is sufficient to cause glomerular disease. Despite the development of glomerular disease in mice that overexpress Cxcr4, their disease was milder and lacked features of full-blown RPGN. The Vhlh gene encodes VHL protein (pVHL, product of the Von Hippel-Lindau gene) that functions as the substrate recognition component of an E3 ubiquitin ligase. Although HIFα subunits are the best characterized substrates for pVHL, additional non-HIF mediated targets have been identified. To determine the role of HIF stabilization in this RPGN model, we generated double mutants that lack aryl hydrocarbon receptor nuclear translocator gene (Arnt, also called HIF1beta), an obligate dimerization partner for HIFα subunit function. Podocyte-selective deletion of Arnt in Vhlh mutant mice completely rescued the RPGN phenotype and mice survived longer than 8 months of age. Furthermore, stabilization of HIF2α alone led to glomerular disease characterized by crescentic transformation. Collectively, these results indicate an alternative mechanism for the pathogenesis of RPGN and glomerular disease in an animal model and suggest novel molecular pathways for intervention in this disease. In addition, we demonstrate a key role for VHL-HIF-Cxcr4 molecular pathway for the integrity of the glomerular barrier.
5

Decoding lysine-11 signals in ubiquitination

Grice, Guinevere January 2018 (has links)
The diverse outcomes of ubiquitination primarily relate to the flexibility of ubiquitin in forming homo- or heterotypic chains on each of its seven lysine residues which in turn stimulate distinct downstream signaling pathways. These ubiquitin signals must be selectively initiated on the substrate protein and subsequently decoded to facilitate the desired cellular function. These initiation and decoding steps often involve additional post-translational modifications and ubiquitin receptor proteins, but the enzymes and ubiquitin chains involved for many ubiquitinated substrates are not clear. Here, I have explored the initiation and decoding of ubiquitin signals, focusing on lysine-11 (K11) linked polyubiquitin chains and their role in protein degradation. I established in vitro assays to understand how K11-chains are decoded and whether these chains act as a signal for proteasome-mediated degradation. Pure homotypic K11-chains did not bind the proteasome or its associated ubiquitin binding proteins, but did bind to the mitophagy ubiquitin receptors, MyosinVI and TAX1BP1. Heterotypic K11/K48 linkages not only bound the proteasome but also stimulated degradation of the cell cycle substrate, cyclin B1. To further explore the functions of K11-chains I focused on the hypoxia inducible transcription factor (HIF) pathway, as K11-ubiquitination had been implicated in proteasome-independent degradation of the transcription factor. I established an in vitro assay to initiate HIF ubiquitination, via prolyl hydroxylation, and determine the type of ubiquitin chains involved. Recombinant HIF isoforms were rapidly hydroxylated when incubated with cell extracts. Moreover, the levels of iron and small molecule metabolites within the lysates regulated HIF hydroxylation. However, this hydroxylation was insufficient to reproducibly promote HIF ubiquitination or determine the ubiquitin chains involved. While the nature of the polyubiquitin chains formed in the HIF pathway remain elusive, my studies identify distinct roles for homotypic and heterotypic K11-polyubiquitination in proteasome-mediated degradation.
6

Investigating the effects of chemotherapy and radiation therapy in a prostate cancer model system using SERS nanosensors

Camus, Victoria Louise January 2016 (has links)
Intracellular redox potential (IRP) is a measure of how oxidising or reducing the environment is within a cell. It is a function of numerous factors including redox couples, antioxidant enzymes and reactive oxygen species. Disruption of the tightly regulated redox status has been linked to the initiation and progression of cancer. However, there is very limited knowledge about the quantitative nature of the redox potential and pH gradients that exist in cancer tumour models. Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments, similar to those found in tumours. From the necrotic core to the outer proliferating layer there exist gradients of oxygen, lactate, pH and drug penetration. Tumours also have inadequate vasculature resulting in a state of hypoxia. Hypoxia is a key player in metabolic dysregulation but can also provide cells with resistance against cancer treatments, particularly chemotherapy and radiation therapy. The primary hypoxia regulators are HIFs (Hypoxia Inducible Factors) which under low O2 conditions bind a hypoxia response element, inhibiting oxidative phosphorylation and upregulating glycolysis which has two significant implications: the first is an increase in levels of NADPH/NADH, the main electron donors found in cells which impacts the redox state, whilst the second is a decrease in intracellular pH (pHi) because of increased lactate production. Thus, redox state and intracellular pHi can be used as indicators of metabolic changes within 3D cultures and provide insight into cellular response to therapy. Surface-Enhanced Raman Spectroscopy (SERS) provides a real-time, high resolution method of measuring pHi and IRP in cell culture. It allows for quick and potentially portable analysis of MTS, providing a new platform for monitoring response to drugs and therapy in an unobtrusive manner. Redox and pH-active probes functionalised to Au nanoshells were readily taken up by prostate cancer cell lines and predominantly found to localise in the cytosol. These probes were characterised by density functional theory and spectroelectrochemistry, and their in vitro behaviour modelled by the chemical induction of oxidative and reductive stress. Next, targeting nanosensors to different zones of the MTS allowed for spatial quantification of redox state and pHi throughout the structure and the ability to map the effects of drug treatments on MTS redox biology. The magnitude of the potential gradient can be quantified as free energy (ΔG) and used as a measurement of MTS viability. Treatment of PC3 MTS with staurosporine, an apoptosis inducer, was accompanied by a decrease in free energy gradients over time, whereas treatment of MTS with cisplatin, a drug to which they are resistant, showed an increase in viability indicating a compensatory mechanism and hence resistance. Finally, using this technique the effects of ionising radiation on IRP and pHi in the tumour model was explored. Following exposure to a range of doses of x-ray radiation, as well as single and multi-fractionated regimes, IRP and pHi were measured and MTS viability assessed. Increased radiation dosage diminished the potential gradient across the MTS and decreased viability. Similarly, fractionation of a single large dose was found to enhance MTS death. This novel SERS approach therefore has the potential to not only be used as a mode of drug screening and tool for drug development, but also for pre-clinical characterisation of tumours enabling clinicians to optimise radiation regimes in a patient-specific manner.
7

V-ATPase regulation of Hypoxia Inducible transcription Factors

Miles, Anna Louise January 2018 (has links)
Metazoans have evolved conserved mechanisms to promote cell survival under low oxygen tensions by initiating a transcriptional cascade centered on the action of Hypoxia Inducible transcription Factors (HIFs). In aerobic conditions, HIFs are inactivated by ubiquitin-proteasome-mediated degradation of their a subunit, which is dependent on prolyl hydroxylation by 2-oxoglutarate (2-OG) and Fe(II)-dependent prolyl hydroxylases (PHDs). In hypoxia, HIF-$\alpha$ is no longer hydroxylated and is therefore stabilised, activating a global transcriptional response to ensure cell survival. Interestingly, HIFs can also be activated in aerobic conditions, however the mechanisms of this oxygen-independent regulation are poorly understood. Here, I have explored the role of the vacuolar H+-ATPase (V-ATPase), the major proton pump for acidifying intracellular vesicles and facilitating lysosomal degradation, in regulating HIF-$\alpha$ turnover. Unbiased forward genetic screens in near-haploid human cells identified that disruption of the V-ATPase leads to activation of HIFs in aerobic conditions. Rather than preventing the lysosomal degradation of HIF-$\alpha$, I found that V-ATPase inhibition indirectly affects the canonical proteasome-mediated degradation of HIF-$\alpha$ isoforms by altering the intracellular iron pool and preventing HIF-$\alpha$ prolyl hydroxylation. In parallel, I characterised two putative mammalian V-ATPase assembly proteins, TMEM199 and CCDC115, identified by the forward genetic screen and subsequent mass spectrometry analysis. I confirmed that both TMEM199 and CCDC115 are required for V-ATPase function, and established assays to determine how TMEM199 and CCDC115 associate with components of the core V-ATPase complex. Lastly, to measure how V-ATPase activity leads to changes in the labile iron pool, I developed an endogenous iron reporter using CRISPR-Cas9 knock-in technology. This approach confirmed that iron homeostasis is impaired during V-ATPase inhibition, and demonstrated that exogenous ferric iron can restore the labile iron pool in a transferrin-independent manner. Together my studies highlight a crucial link between V-ATPase activity, iron homeostasis, and the hypoxic response pathway.

Page generated in 0.0864 seconds