• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensitivity Study on Modification of Vertical Distribution of Strength and Stiffness in Wood Shear Wall Building Models

Perry, Logan Andrew 26 June 2018 (has links)
This thesis presents a numerical study of the influence of varying story strength on the seismic performance of multi-story wood-frame shear wall buildings. In the prior FEMA P695 studies of these buildings, the non-simulated collapse limit-state was exceeded primarily in the first story. This observation raised interest in quantifying the influence of varying strength from story to story on seismic response. In this study, four distributions of strength are used as bounding cases. The Parabolic strength distribution (1) results from the ELF vertical force distribution method in ASCE 7 that assigns forces to each level based on weight and story height. The Triangular strength distribution (2) results from an assumed vertical force distribution that assigns lateral forces based on the seismic weight at each level. The Constant strength distribution (3) results from an assumed vertical force distribution that assigns a concentrated lateral force at the uppermost level based on the total seismic weight of all levels. The Baseline distribution (4) reflects a realistic vertical strength distribution resulting from the ELF vertical force distribution method. The FEMA P695 methodology, which quantifies seismic performance via adjusted collapse margin ratios, is employed in this study. The analytical models include P-Delta effects and utilize the 10-parameter hysteresis CASHEW model. It is observed that the Parabolic strength distribution allows for dissipation of energy over the height of the building, has less collapse risk than other strength distributions studied, and reduces occurrence of concentrated deformations in a single story from the onset of applied lateral force. / MS / Multi-story wood-frame buildings are becoming increasingly common, especially in areas like the western United States. Past earthquakes have shown that multi-story wood-frame buildings that have a soft and weak first story relative to upper stories are vulnerable to collapsing on the first story. This vulnerability has raised interest in understanding how the relative strength of each story of a wood building affects its performance in an earthquake. This thesis studies four strength distribution cases. The first three cases are called the Parabolic, Triangular and Constant strength distributions named after the shape of the building’s story to story strength profile. For example, the Triangular case has the least amount of strength on the top story, which increases linearly in the lower stories down to the first story, which has the greatest strength. The fourth case, called the Baseline case, is based on actual building designs. All four strength distribution cases have the same first story strength. Two evaluation methods are used to test the strength distribution cases. The first, known as a pushover analysis, applies lateral forces to the building until the roof reaches a specified displacement. The second, called an incremental dynamic analysis, subjects the building to increasingly intense earthquakes until a certain amount of displacement is reached in any story. The results of these analyses showed that the Parabolic strength distribution most effectively used the strength available in every story of the building to delay the onset of collapse and to distribute the location of the collapse story.
2

A Detailed Analysis For Evaluation Of The Degradation Characteristics Of Simple Structural Systems

Kurtman, Burak 01 May 2007 (has links) (PDF)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load tests of reinforced concrete columns, are employed to quantify the degradation characteristics of simple systems by calibrating the selected degrading model parameters for unloading stiffness, strength and pinching of a previously developed hysteresis model. The obtained values of parameters from cyclic test results are compared with the recommended values in literature. In the last part of the study, response of SDOF systems with various degradation characteristics are investigated using a set of seismic excitations recorded during some major earthquakes. The results indicate that when all the degradation components are combined in a structural system, the effect of degradation on response values becomes much more pronounced.
3

Caractérisation et modélisation du comportement des matériaux magnétiques doux sous contrainte thermique / Characterization and modeling of soft ferromagnetic materials under thermal stress

Bui, Anh Tuan 19 April 2011 (has links)
Depuis longtemps, les dispositifs ou systèmes électromagnétiques sont omniprésents dans les milieux industriel et domestique. Le circuit magnétique de ces systèmes est un des éléments clefs d’une conversion énergétique efficace. Outre l’optimisation de la géométrie du circuit magnétique, la maîtrise de l’efficacité énergétique passe par l’utilisation de matériaux magnétiques performants et par une connaissance approfondie de leur comportement, notamment sous contraintes élevées comme les températures et fréquences élevées que l’on rencontre de plus en plus aujourd’hui. Notre travail s’intègre dans le cadre des recherches menées par l’équipe matériaux du laboratoire AMPERE, notamment sur les modèles comportementaux de matériaux magnétiques. Partant de nombreuses caractérisations expérimentales en fonction de la température, nous avons développé un modèle « dynamique » adapté à différents types de matériaux ferromagnétiques, et permettant de simuler rapidement l’influence de la température sur le fonctionnement permanent et transitoire de systèmes électromagnétiques simples. Il s’appuie sur l’association des modèles d’hystérésis de Jiles-Atherton et dit « tubes de flux ». Ce modèle, et la démarche associée de couplage entre phénomènes magnétique, thermique et électrique, sont validés sur un capteur de courant et une inductance. Les résultats confirment l’importance de l’effet de la température sur les performances des systèmes, et la pertinence de disposer d’un tel modèle pour optimiser ces systèmes / Since a long time, systems and electrical devices are everywhere in the industrial and domestic environments. The magnetic core of these systems is a key for achieving energy conversion efficiency. Apart from the geometry optimization, high performance materials are mandatory for obtaining an effective energy conversion, as well as deep knowledge of their behaviour. The choice of materials is even more important when strong constraints are imposed, like high temperature and high frequency, which are more and more met nowadays. Our work is taken on in the context of the research activity on the modeling of the behaviour of magnetic materials of the “materials” team of AMPERE-Lab. Starting from a large number of experimental characterizations of materials at different temperatures, we have developed a “dynamic” model adapted to the different kinds of magnetic materials, which allows to quickly simulate the effect of temperature on the steady-state and transient regime of simple electromagnetic systems. It is founded on using Jiles-Atherton’s hysteresis models together with the so called “flux tubes”. This modelling and the associated approach of coupling electrical, thermal and magnetic phenomena are validated on a current sensor and an inductance. The results confirm the importance of the effect of the temperature on the performances of systems, and the interest of having such a model so as to optimizing these systems

Page generated in 0.0822 seconds