• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

First enantioselective oxidative rearrangement of indoles to spirooxindoles, studies toward the total synthesis of IB-00208 and total synthesis of cribrostatin 6

Knueppel, Daniel Isaiah 01 October 2010 (has links)
The first enantioselective oxidative rearrangement of indoles to spirooxindoles was developed. A 2,3-disubstituted indole was stereoselectively epoxidized using an in situ-generated chiral dioxirane catalyst. Rearrangement of the transient epoxide intermediate afforded the antipode of the tricyclic spirooxindole present in the marine alkaloid citrinadin A. A mild and rapid entry to 1,4-dioxygenated xanthones from benzocyclobutenones was developed. This method was applied to the construction of the highly aromatic pentacyclic core of IB-00208, a promising antitumor agent with reported nanomolar activity. The requisite angularly-fused benzocyclobutenone was accessed via a novel ring-closing metathesis approach. Lack of success in synthesizing the final ring of IB-00208 from the pentacycle led us to revise our approach and incorporate an extra ring earlier in the synthesis. After constructing a modified benzocyclobutenone, the hexacyclic core of IB-00208 was efficiently accessed using the same key chemistry. An oxidation, deprotection and glycosylation remain to complete the synthesis of the natural product. A total synthesis of antimicrobial and antineoplastic cribrostatin 6 was accomplished in only four steps in the longest linear sequence from commercially available starting materials. The key step employed a tandem 4π-electrocyclic ring opening, radical cyclization, and homolytic aromatic substitution sequence to afford the tricyclic core of the natural product, which was converted to cribrostatin 6 via a subsequent oxidation in one pot. The versatility of this reaction sequence was demonstrated by preparation of analogs of the natural product, which were tested for their anticancer activity. / text

Page generated in 0.0198 seconds