• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pancreatic Islet Transplantation : Modifications of Islet Properties to Improve Graft Survival

Cabric, Sanja January 2007 (has links)
<p>During the past decade clinical islet transplantation has become a viable strategy for curing type 1 diabetes. The limited supply of organs, together with the requirement for islets from multiple donors to achieve insulin independence, has greatly limited the application of this approach. </p><p>The islets are infused into the liver via the portal vein, and once exposed to the blood, the grafted tissue has been shown to be damaged by the instant blood-mediated inflammatory reaction (IBMIR), which is characterized by coagulation and complement activation as well as leukocyte infiltration into the islets. Islet revascularization is a subsequent critical step for the long-term function of the transplanted graft, which may partially be impeded by the IBMIR. </p><p>In this thesis, we have explored novel strategies for circumventing the effects of the IBMIR and facilitating islet revascularization.</p><p>Systemic inhibitors of the IBMIR are typically associated with an increased risk of bleeding. We therefore evaluated alternative strategies for modulating the islets prior to transplantation. We demonstrated, using an adenoviral vector, that a high level of expression and secretion of the anticoagulant hirudin could be induced in human islets. An alternative approach to limiting the IBMIR was developed in which anticoagulant macromolecular heparin complexes were conjugated to the islet surface. This technique proved effective in limiting the IBMIR in both an in vitro blood loop model and an allogeneic porcine model of islet transplantation. An increased adhesion of endothelial cells to the heparin-coated islet surface was demonstrated, as was the capacity of the heparin conjugate to bind the angiogenic factors VEGF and FGF; these results have important implications for the revascularization process.</p><p>The outcome of the work in this thesis suggests that modulation of the islet surface is an attractive alternative to systemic therapy as a strategy for preventing the IBMIR. Moreover, the same techniques can be employed to induce revascularization and improve the engraftment of the transplanted islets. Ultimately, improved islet viability and engraftment will make islet transplantation a more effective procedure and increase the number of patients whose diabetes can be cured.</p>
2

Pancreatic Islet Transplantation : Modifications of Islet Properties to Improve Graft Survival

Cabric, Sanja January 2007 (has links)
During the past decade clinical islet transplantation has become a viable strategy for curing type 1 diabetes. The limited supply of organs, together with the requirement for islets from multiple donors to achieve insulin independence, has greatly limited the application of this approach. The islets are infused into the liver via the portal vein, and once exposed to the blood, the grafted tissue has been shown to be damaged by the instant blood-mediated inflammatory reaction (IBMIR), which is characterized by coagulation and complement activation as well as leukocyte infiltration into the islets. Islet revascularization is a subsequent critical step for the long-term function of the transplanted graft, which may partially be impeded by the IBMIR. In this thesis, we have explored novel strategies for circumventing the effects of the IBMIR and facilitating islet revascularization. Systemic inhibitors of the IBMIR are typically associated with an increased risk of bleeding. We therefore evaluated alternative strategies for modulating the islets prior to transplantation. We demonstrated, using an adenoviral vector, that a high level of expression and secretion of the anticoagulant hirudin could be induced in human islets. An alternative approach to limiting the IBMIR was developed in which anticoagulant macromolecular heparin complexes were conjugated to the islet surface. This technique proved effective in limiting the IBMIR in both an in vitro blood loop model and an allogeneic porcine model of islet transplantation. An increased adhesion of endothelial cells to the heparin-coated islet surface was demonstrated, as was the capacity of the heparin conjugate to bind the angiogenic factors VEGF and FGF; these results have important implications for the revascularization process. The outcome of the work in this thesis suggests that modulation of the islet surface is an attractive alternative to systemic therapy as a strategy for preventing the IBMIR. Moreover, the same techniques can be employed to induce revascularization and improve the engraftment of the transplanted islets. Ultimately, improved islet viability and engraftment will make islet transplantation a more effective procedure and increase the number of patients whose diabetes can be cured.
3

Imaging Islets of Langerhans by Positron Emission Tomography : Quantification of Beta-Cell Mass in the Native Pancreas and the Islet Graft

Eriksson, Olof January 2011 (has links)
Type 1 and 2 Diabetes Mellitus are a growing health problem throughout the world. There is an increasing  need for methodologies, which are both reliable and non-invasive to measure the amount of insulin-producing tissue (Beta-cell mass, or BCM), as well as rapidly quantify changes in the BCM due to the onset of disease, beta-cell replacement therapy, or other treatments. Positron Emission Tomography (PET) is a non-invasive, quantitative functional imaging technique which can be used to study dynamical or static processes inside the body. In this thesis, we present a study protocol for in vivo imaging of the most common form of beta- cell replacement therapy; islet transplantation. Islets were labeled with the PET tracer, 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG), and administered intra-portally, while the recipient was monitored by PET/CT. The hepatic distribution of the islets was highly heterogeneous, and around 25% (human) or 50% (porcine) of the administered islets could not be found in the liver after completed transplantation, confirming previous reports of considerable cell injury during the procedure leading to low hepatic engraftment. Native BCM in the pancreas can potentially be quantified using a PET tracer with sufficiently high specificity, but the major obstacle is the relative low amounts of insulin producing tissue (only 1-2% of the pancreatic volume). Two tetrabenazine analogues, [18F]FE-(+)-DTBZ and [18F]FE-(+)-DTBZ-d4, are ligands to VMAT2, which is expressed in islet tissue. Both analogues were investigated and characterized as potential BCM imaging agents both in vitro and in vivo.  Both tracers exhibited high preferential binding to islet tissue compared to exocrine pancreatic tissue. However, the specificity was not high enough to overcome the obscuring exocrine signal in vivo (7-10% of the signal originating from specific islet tracer uptake). This thesis demonstrates that it is possible to quantitatively assess islet transplantation by PET imaging. In vivo determination of native pancreatic BCM is, in theory, possible with both [18F]FE-(+)-DTBZ and [18F]FE-(+)-DTBZ-d4, but tracer analogues with higher islet specificity is needed for quantification of smaller BCM changes with physiological impact.
4

The Role of Innate Immunity in Islet Transplantation : Clinical and Experimental Studies

Moberg, Lisa January 2004 (has links)
<p>Clinical islet transplantation is an emerging procedure to cure type 1 diabetes. The graft is implanted by infusion into the liver through the portal vein. A major obstacle that still needs to be overcome is the requirement for islets from multiple donors to achieve insulin independence. </p><p>An innate inflammatory reaction, the IBMIR, is elicited when islets are exposed to blood. The IBMIR has been described as a clotting reaction culminating in disruption of islet morphology and is a plausible cause for loss of tissue during the early post-transplant period. </p><p>In this thesis, the underlying mechanisms of the IBMIR were characterized. The IBMIR was for the first time demonstrated in patients undergoing an islet transplant, and a number of clinically applicable strategies to limit this reaction were identified.</p><p>The thrombin inhibitor melagatran completely blocked the IBMIR in an <i>in vitro</i> tubing blood loop system, indicating that thrombin is the driving force in the reaction. Interestingly, islets were shown to produce and secrete tissue factor (TF), the physiological trigger of coagulation. Inactivated FVIIa, a specific inhibitor of TF, successfully blocked initiation of the IBMIR. An alternative approach to limit the IBMIR was to pre-treat islets in culture prior to transplantation. Nicotinamide added to the culture medium effectively decreased the level of TF in human islets. Infiltration of immune cells, also a part of the IBMIR, was characterized in detail. The predominant cell types infiltrating the islets were neutrophilic granulocytes and, to a lesser degree, monocytes. Both cell types may exert direct cytotoxic effects, and the antigen-presenting monocytes may also be important for directing the specific immune system to the site of inflammation. </p><p>These findings have provided new insight into the nature of the IBMIR and offer several new strategies to improve the outcome of clinical islet transplantation.</p>
5

Mechanisms and Therapeutic Interventions of Instant Blood-Mediated Inflammatory Reaction (IBMIR)

Johansson, Helena January 2007 (has links)
<p>Intraportal transplantation of isolated islets of Langerhans is a procedure approaching clinical acceptance as a treatment for patients with type I diabetes mellitus. One major problem with this treatment is that large amounts of cells are lost at the time of infusion into the portal vein, resulting in a low level of engraftment of the islets. One likely explanation for this loss is the instant blood-mediated inflammatory reaction (IBMIR), a thrombotic/inflammatory reaction occurring when islets come in contact with blood. The IBMIR is characterized by coagulation and complement activation, leading to platelet consumption, leukocyte infiltration of the islets, and disruption of islet integrity.</p><p>In this thesis, the IBMIR is shown to be triggered by tissue factor (TF), the main initiator of blood coagulation<i> in vivo</i>. TF is expressed in two forms by the endocrine cells of the pancreas, a full-length membrane-bound and an alternatively spliced soluble form. Blocking TF <i>in vitro</i> efficiently reduces the macroscopic clotting, expression of coagulation activation markers, and leukocyte infiltration. This blockade can be achieved by adding either an active site-specific anti-TF antibody or site-inactivated FVIIa that competes with active FVIIa in the blood. TF may be secreted from the islets, since it is colocalized with insulin and glucagon in their granules. The IBMIR has also been demonstrated <i>in vivo</i> in patients transplanted with isolated islets.</p><p>There are two ways to block the IBMIR in transplantation: systemic treatment of the patients, or islet pretreatment before transplantation to reduce their thrombogenicity. In this thesis, low molecular weight dextran sulfate (LMW-DS) is shown to reduce activation of the complement and coagulation systems and decrease the cell infiltration into the islets <i>in vitro</i> and<i> in vivo</i>, in both a xenogenic and an allogenic setting. Based on these results, LMW-DS is now in clinical trials. </p>
6

The Role of Innate Immunity in Islet Transplantation : Clinical and Experimental Studies

Moberg, Lisa January 2004 (has links)
Clinical islet transplantation is an emerging procedure to cure type 1 diabetes. The graft is implanted by infusion into the liver through the portal vein. A major obstacle that still needs to be overcome is the requirement for islets from multiple donors to achieve insulin independence. An innate inflammatory reaction, the IBMIR, is elicited when islets are exposed to blood. The IBMIR has been described as a clotting reaction culminating in disruption of islet morphology and is a plausible cause for loss of tissue during the early post-transplant period. In this thesis, the underlying mechanisms of the IBMIR were characterized. The IBMIR was for the first time demonstrated in patients undergoing an islet transplant, and a number of clinically applicable strategies to limit this reaction were identified. The thrombin inhibitor melagatran completely blocked the IBMIR in an in vitro tubing blood loop system, indicating that thrombin is the driving force in the reaction. Interestingly, islets were shown to produce and secrete tissue factor (TF), the physiological trigger of coagulation. Inactivated FVIIa, a specific inhibitor of TF, successfully blocked initiation of the IBMIR. An alternative approach to limit the IBMIR was to pre-treat islets in culture prior to transplantation. Nicotinamide added to the culture medium effectively decreased the level of TF in human islets. Infiltration of immune cells, also a part of the IBMIR, was characterized in detail. The predominant cell types infiltrating the islets were neutrophilic granulocytes and, to a lesser degree, monocytes. Both cell types may exert direct cytotoxic effects, and the antigen-presenting monocytes may also be important for directing the specific immune system to the site of inflammation. These findings have provided new insight into the nature of the IBMIR and offer several new strategies to improve the outcome of clinical islet transplantation.
7

Mechanisms and Therapeutic Interventions of Instant Blood-Mediated Inflammatory Reaction (IBMIR)

Johansson, Helena January 2007 (has links)
Intraportal transplantation of isolated islets of Langerhans is a procedure approaching clinical acceptance as a treatment for patients with type I diabetes mellitus. One major problem with this treatment is that large amounts of cells are lost at the time of infusion into the portal vein, resulting in a low level of engraftment of the islets. One likely explanation for this loss is the instant blood-mediated inflammatory reaction (IBMIR), a thrombotic/inflammatory reaction occurring when islets come in contact with blood. The IBMIR is characterized by coagulation and complement activation, leading to platelet consumption, leukocyte infiltration of the islets, and disruption of islet integrity. In this thesis, the IBMIR is shown to be triggered by tissue factor (TF), the main initiator of blood coagulation in vivo. TF is expressed in two forms by the endocrine cells of the pancreas, a full-length membrane-bound and an alternatively spliced soluble form. Blocking TF in vitro efficiently reduces the macroscopic clotting, expression of coagulation activation markers, and leukocyte infiltration. This blockade can be achieved by adding either an active site-specific anti-TF antibody or site-inactivated FVIIa that competes with active FVIIa in the blood. TF may be secreted from the islets, since it is colocalized with insulin and glucagon in their granules. The IBMIR has also been demonstrated in vivo in patients transplanted with isolated islets. There are two ways to block the IBMIR in transplantation: systemic treatment of the patients, or islet pretreatment before transplantation to reduce their thrombogenicity. In this thesis, low molecular weight dextran sulfate (LMW-DS) is shown to reduce activation of the complement and coagulation systems and decrease the cell infiltration into the islets in vitro and in vivo, in both a xenogenic and an allogenic setting. Based on these results, LMW-DS is now in clinical trials.
8

Studies of Innate and Adaptive Immunity in Islet Transplantation

Hårdstedt, Maria January 2014 (has links)
Clinical islet transplantation is today an established alternative treatment for a selected group of type 1 diabetes patients. The predominant technique for transplantation is infusion of islets in the liver via the portal vein. Obstacles to advancing islet transplantation include limited engraftment resulting from an immediate blood-mediated inflammatory reaction (IBMIR), a life-long need for immunosuppression and the shortage of organs available. In this thesis, innate and adaptive immunity were explored in allogeneic and xenogeneic settings, with the long-term goal of preventing islet graft destruction. Methods for studying immune responses to islets in blood and engrafted islets in liver tissue (intragraft gene expression) were developed and refined. The innate response to human islets and exocrine tissue in ABO-compatible blood was characterized up to 48 h using a novel whole-blood model. Physiological changes in the blood during incubations were explored and adjusted to allow prolonged experiments. Increased production of chemokines targeting CXCR1/2, CCR2 and CXCR3 was observed, accompanied by massive intra-islet neutrophil infiltration. Notably, endocrine and exocrine tissue triggered a similarly strong innate immune response. Two studies of adult porcine islet transplantation to non-human primates (NHPs) were performed. Expression of immune response genes induced in liver tissue of non-immunosuppressed NHPs (≤72 h) was evaluated after porcine islet transplantation. Up-regulation of CXCR3 mRNA, together with IP-10, Mig, MIP-1α, RANTES, MCP-1 and cytotoxic effector molecule transcripts, was associated with T-cell and macrophage infiltration at 48-72 h. Long-term survival (&gt;100 days) of adult porcine islets in a NHP model was later demonstrated using T-cell-based immunosuppression, including co-stimulatory blockade (anti-CD154 mAb). Graft failure was associated with increased levels of circulating, indirectly activated T cells, non-Gal pig-specific IgG and gene transcripts of inflammatory cytokines. Microarray analysis of the response to inflammatory cytokines in cultured porcine islets identified genes involved in cell death, immune responses and oxidative stress; this gene pattern coincided with physiological changes (decrease in insulin and ATP content). In summary, allogeneic whole-blood experiments and xenogeneic in vivo studies underscored the importance of preventing early inflammation and cell-recruitment to avoid islet graft loss in islet transplantation. Long-term survival of porcine islets in NHPs was shown to be feasible using T-cell-directed immunosuppression, including anti-CD154 mAb.

Page generated in 0.0277 seconds