• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation de la hauteur des arbres à l'échelle régionale : application à la Guyane Française / Canopy height estimation on a regional scale : Application to French Guiana

Fayad, Ibrahim 15 June 2015 (has links)
La télédétection contribue à la cartographie et la modélisation des paramètres forestiers. Ce sont les systèmes optiques et radars qui sont le plus généralement utilisés pour extraire des informations utiles à la caractérisation de ces paramètres. Ces systèmes ont montré des bons résultats pour estimer la biomasse dans certains biomes. Cependant, ils présentent des limitations importantes pour des forêts ayant un niveau de biomasse élevé. En revanche, la télédétection LiDAR s’est avérée être une bonne technique pour l'estimation des paramètres forestiers tels que la hauteur de la canopée et la biomasse. Alors que les LiDAR aéroportés acquièrent en général des données avec une forte densité de points mais sur des petites zones en raison du coût de leurs acquisitions, les données LiDAR satellitaires acquises par le système spatial (GLAS) ont une densité d'acquisition faible mais avec une couverture géographique mondiale. Il est donc utile d'analyser la pertinence de l'intégration des hauteurs estimées à partir des capteurs LiDAR et des données auxiliaires afin de proposer une carte de la hauteur des arbres avec une bonne précision et une résolution spatiale élevée. En outre, l'estimation de la hauteur des arbres à partir du GLAS est difficile compte tenu de l'interaction complexe entre les formes d'onde LiDAR, le terrain et la végétation, en particulier dans les forêts denses. Par conséquent, la recherche menée dans cette thèse vise à: 1) Estimer et valider la hauteur des arbres en utilisant des données acquises par le LiDAR aéroportés et GLAS. 2) évaluer le potentiel de la fusion des données LiDAR (avec les données aéroportées ou satellitaires) et des données auxiliaires pour l'estimation de la hauteur des arbres à une échelle régionale (Guyane française). L'estimation de la hauteur avec le LiDAR aéroporté a montré une EQM sur les estimations de 1,6 m. Ensuite, le potentiel de GLAS pour l'estimation de la hauteur a été évalué en utilisant des modèles de régression linéaire (ML) ou Random Forest (RF) avec des métriques provenant de la forme d'onde et de l'ACP. Les résultats ont montré que les modèles d’estimation des hauteurs avaient des précisions semblables en utilisant soit les métriques de GLAS ou les composantes principales (PC) obtenues à partir des formes d’onde GLAS (EQM ~ 3,6 m). Toutefois, un modèle de régression (ML ou RF) basé sur les PCs est une alternative pour l'estimation de la hauteur, car il ne nécessite pas l'extraction de certaines métriques de GLAS qui sont en général difficiles à dériver dans les forêts denses.Finalement, la hauteur extraite à la fois des données LiDAR aéroporté et GLAS a servi tout d'abord à spatialiser la hauteur en utilisant les données environnementales cartographiées. En utilisant le RF, la spatialisation de la hauteur des arbres a montré une EQM sur les estimations de la hauteur de 6,5 m à partir de GLAS et de 5,8 m à partir du LiDAR aéroporté. Ensuite, afin d'améliorer la précision de la spatialisation de la hauteur, la technique régression-krigeage (krigeage des résidus de la régression du RF) a été utilisée. Les résultats de la régression-krigeage indiquent une diminution de l'erreur quadratique moyenne de 6,5 à 4,2 m pour les cartes de la hauteur de la canopée à partir de GLAS, et de 5,8 à 1,8 m pour les cartes de la hauteur de la canopée à partir des données LiDAR aéroporté. Enfin, afin d'étudier l'impact de l'échantillonnage spatial des futures missions LiDAR sur la précision des estimations de la hauteur de la canopée, six sous-ensembles ont été extraits de de la base LiDAR aéroporté. Ces six sous-ensembles de données LiDAR ont respectivement un espacement des lignes de vol de 5, 10, 20, 30, 40 et 50 km. Finalement, en utilisant la technique régression-krigeage, l’EQM sur la carte des hauteurs était de 1,8 m pour le sous-ensemble ayant des lignes de vol espacés de 5 km, et a augmentée jusqu’à 4,8 m pour le sous-ensemble ayant des lignes de vol espacés de 50 km. / Remote sensing has facilitated the techniques used for the mapping, modelling and understanding of forest parameters. Remote sensing applications usually use information from either passive optical systems or active radar sensors. These systems have shown satisfactory results for estimating, for example, aboveground biomass in some biomes. However, they presented significant limitations for ecological applications, as the sensitivity from these sensors has been shown to be limited in forests with medium levels of aboveground biomass. On the other hand, LiDAR remote sensing has been shown to be a good technique for the estimation of forest parameters such as canopy heights and above ground biomass. Whilst airborne LiDAR data are in general very dense but only available over small areas due to the cost of their acquisition, spaceborne LiDAR data acquired from the Geoscience Laser Altimeter System (GLAS) have low acquisition density with global geographical cover. It is therefore valuable to analyze the integration relevance of canopy heights estimated from LiDAR sensors with ancillary data (geological, meteorological, slope, vegetation indices etc.) in order to propose a forest canopy height map with good precision and high spatial resolution. In addition, estimating forest canopy heights from large-footprint satellite LiDAR waveforms, is challenging given the complex interaction between LiDAR waveforms, terrain, and vegetation, especially in dense tropical and equatorial forests. Therefore, the research carried out in this thesis aimed at: 1) estimate, and validate canopy heights using raw data from airborne LiDAR and then evaluate the potential of spaceborne LiDAR GLAS data at estimating forest canopy heights. 2) evaluate the fusion potential of LiDAR (using either sapceborne and airborne data) and ancillary data for forest canopy height estimation at very large scales. This research work was carried out over the French Guiana.The estimation of the canopy heights using the airborne showed an RMSE on the canopy height estimates of 1.6 m. Next, the potential of GLAS for the estimation of canopy heights was assessed using multiple linear (ML) and Random Forest (RF) regressions using waveform metrics and principal component analssis (PCA). Results showed canopy height estimations with similar precisions using either LiDAR metrics or the principal components (PCs) (RMSE ~ 3.6 m). However, a regression model (ML or RF) based on the PCA of waveform samples is an interesting alternative for canopy height estimation as it does not require the extraction of some metrics from LiDAR waveforms that are in general difficult to derive in dense forests, such as those in French Guiana. Next, canopy heights extracted from both airborne and spaceborne LiDAR were first used to map canopy heights from available mapped environmental data (geological, meteorological, slope, vegetation indices etc.). Results showed an RMSE on the canopy height estimates of 6.5 m from the GLAS dataset and of 5.8 m from the airborne LiDAR dataset. Then, in order to improve the precision of the canopy height estimates, regression-kriging (kriging of random forest regression residuals) was used. Results indicated a decrease in the RMSE from 6.5 to 4.2 m for the regression-kriging maps from the GLAS dataset, and from 5.8 to 1.8 m for the regression-kriging map from the airborne LiDAR dataset. Finally, in order to study the impact of the spatial sampling of future LiDAR missions on the precision of canopy height estimates, six subsets were derived from the airborne LiDAR dataset with flight line spacing of 5, 10, 20, 30, 40 and 50 km (corresponding to 0.29, 0.11, 0.08, 0.05, 0.04, and 0.03 points/km², respectively). Results indicated that using the regression-kriging approach, the precision on the canopy height map was 1.8 m with flight line spacing of 5 km and decreased to an RMSE of 4.8 m for the configuration for the 50 km flight line spacing.
2

Investigating the possibility of forest height/volume estimation using lidar, radar and optical images : case study : Nowshahr Forests in Mazindaran, Iran / Estimation de la hauteur et du volume de la forêt à l'aide du lidar, radar et des données optiques : étude de cas : forêts de Nowshahr en Mazindaran, Iran

Rajab Pourrahmati, Manizheh 19 December 2016 (has links)
L'importance de mesurer les paramètres biophysiques de la forêt pour la surveillance de la santé des écosystèmes et la gestion forestière encourage les chercheurs à trouver des méthodes précises et à faible coût en particulier sur les zones étendues et montagneuses. Dans la présente étude, le lidar satellitaire GLAS embarqué à bord du satellite ICESat (Ice Cloud and land Elevation Satellite) a été utilisé pour estimer trois caractéristiques biophysiques des forêts situées dans le nord de l'Iran:1) hauteur maximale de la canopée (Hmax),2)hauteur de Lorey (HLorey), et 3)le volume du bois (V). Des régressions linéaires multiples (RLM), des modèles basés sur les Forêts Aléatoires (FA : Random Forest) et aussi des réseaux de neurones (ANN) ont été développés à l'aide de deux ensembles différents de variables incluant des métriques obtenues à partir des formes d’onde GLAS et des composantes principales (CP) produites à partir de l'analyse en composantes principales (ACP) des données GLAS. Pour valider et comparer les modèles, des critères statistiques ont été calculées sur la base d'une validation croisée. Le meilleur modèle pour l’estimation de la hauteur maximale a été obtenu avec une régression RLM (RMSE=5.0m) qui combine deux métriques extraites des formes d'onde GLAS (H50, Wext), et un paramètre issu du modèle numérique d'élévation (Indice de relief TI). L'erreur moyenne absolue en pourcentage (MAPE) sur les estimations de la hauteur maximale est de 16.4%. Pour la hauteur de Lorey, un modèle basé sur les réseaux de neurones et utilisant des CPs et le Wext fournit le meilleur résultat avec RMSE=3.4m et MAPE=12.3%. Afin d'estimer le volume du bois, deux approches ont été utilisées:(1)estimation du volume à l'aide d’une relation volume-hauteur avec une hauteur estimée à partir de données GLAS et (2)estimation du volume du bois directement à partir des données GLAS en développant des régressions entre le volume in situ et les métriques GLAS. Le résultat de la première approche (RMSE=116.3m3/ha) était légèrement meilleur que ceux obtenus avec la seconde approche. Par exemple, le réseau de neurones basé sur les PCs donnait un RMSE de 119.9m3/ha mais avec des meilleurs résultats que l’approche basée sur la relation volume-hauteur pour les faibles (<10m3/ha) et les forts (>800m3/ha) volumes. Au total, l'erreur relative sur le volume de bois est estimée à environ 26%. En général, les modèles RLM et ANN avaient des meilleures performances par rapport aux modèles de FA. En outre, la précision sur l’estimation de la hauteur à l'aide de métriques issues des formes d'onde GLAS est meilleure que celles basées sur les CPs.Compte tenu des bons résultats obtenus avec les modèles de hauteur GLAS, la production de la carte des hauteurs d’étude par une utilisation combinée de données de télédétection lidar, radar et optique et de données environnementales a été effectuée à l’intérieur de notre zone. Ainsi, des régressions RLM et FA ont été construites entre toutes les hauteurs dérivées des données GLAS, à l'intérieur de la zone d'étude, et les indices extraits des données de télédétection et des paramètres environnementaux. Les meilleurs modèles entrainés pour estimer Hmax (RMSE=7.4m et R_a^2=0.52) et HLorey (RMSE=5.5m et R_a^2=0.59) ont été utilisées pour produire les cartes de hauteurs. La comparaison des Hmax de la carte obtenue avec les valeurs de Hmax in situ à l'endroit de 32 parcelles produit un RMSE de 5.3m et un R2 de 0.71. Une telle comparaison pour HLorey conduit à un RMSE de 4.3m et un R2 de 0.50. Une méthode de régression-krigeage a également été utilisée pour produire une carte des hauteurs en considérant la corrélation spatiale entre les hauteurs. Cette approche, testée dans le but d'améliorer la précision de la carte de la hauteur du couvert fournie par la méthode non-spatiale, a échouée due à l'hétérogénéité de la zone d'étude en termes de la structure forestière et de la topographie. / The importance of measuring forest biophysical parameters for ecosystem health monitoring and forest management encourages researchers to find precise, yet low-cost methods especially in mountainous and large areas. In the present study Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice Cloud and land Elevation Satellite) was used to estimate three biophysical characteristics of forests located in the north of Iran: 1) maximum canopy height (Hmax), 2) Lorey’s height (HLorey), and 3) Forest volume (V). A large number of Multiple Linear Regressions (MLR), Random Forest (RF) and also Artificial Neural Network regressions were developed using two different sets of variables including waveform metrics and Principal Components (PCs) produced from Principal Component Analysis (PCA). To validate and compare models, statistical criteria were calculated based on a five-fold cross validation. Best model concerning the maximum height was an MLR (RMSE=5.0m) which combined two metrics extracted from waveforms (waveform extent "Wext" and height at 50% of waveform energy "H50"), and one from Digital Elevation Model (Terrain Index: TI). The mean absolute percentage error (MAPE) of maximum height estimates was 16.4%. For Lorey’s height, an ANN model using PCs and waveform extent “Wext” outperformed other models (RMSE=3.4m, MAPE=12.3%). In order to estimate forest volume, two approaches was employed: First, estimating volume using volume-height relationship while height is GLAS estimated height; Second, estimation of forest volume directly from GLAS data by developing regressions between in situ volume and GLAS metrics. The result from first approach (116.3m3/ha) was slightly better than the result obtained by the second approach that is a PCs-based ANN model (119.9 m3/ha). But the ANN model performed better in very low (<10 m3/ha) and very high (> 800 m3/ha) volume stands. In total, the relative error of estimated forest volume was about 26%. Generally, MLR and ANN models had better performance when compared to the RF models. In addition, the accuracy of height estimations using waveform metrics was better than those based on PCs.Given the suitable results of GLAS height models (maximum and Lorey’s heights), production of wall to wall height maps from synergy of remote sensing (GLAS, PALSAR, SPOT5 and Landsat-TM) and environmental data (slope, aspect, classified elevation map and also geological map) was taken under consideration. Thus, MLR and RF regressions were built between all GLAS derived heights, inside of the study area, and indices extracted from mentioned remotely sensed and environmental data. The best resulted models for Hmax (RMSE=7.4m and R_a^2=0.52) and HLorey (RMSE=5.5m and R_a^2=0.59) were used to produce a wall to wall maximum canopy height and Lorey’ height maps. Comparison of Hmax extracted from the resulted Hmax map with true height values at the location of 32 in situ plots produced an RMSE and R2 of 5.3m and 0.71, respectively. Such a comparison for HLorey led to an RMSE and R2 of 4.3m and 0.50, respectively. Regression-kriging method was also used to produce canopy height map with considering spatial correlation between canopy heights. This approach, with the aim of improving the precision of canopy height map provided from non-spatial method, was unsuccessful which could be due to the heterogeneity of the study area in case of forest structure and topography.

Page generated in 0.0144 seconds