• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variance reduction and outlier identification for IDDQ testing of integrated chips using principal component analysis

Balasubramanian, Vijay 25 April 2007 (has links)
Integrated circuits manufactured in current technology consist of millions of transistors with dimensions shrinking into the nanometer range. These small transistors have quiescent (leakage) currents that are increasingly sensitive to process variations, which have increased the variation in good-chip quiescent current and consequently reduced the effectiveness of IDDQ testing. This research proposes the use of a multivariate statistical technique known as principal component analysis for the purpose of variance reduction. Outlier analysis is applied to the reduced leakage current values as well as the good chip leakage current estimate, to identify defective chips. The proposed idea is evaluated using IDDQ values from multiple wafers of an industrial chip fabricated in 130 nm technology. It is shown that the proposed method achieves significant variance reduction and identifies many outliers that escape identification by other established techniques. For example, it identifies many of the absolute outliers in bad neighborhoods, which are not detected by Nearest Neighbor Residual and Nearest Current Ratio. It also identifies many of the spatial outliers that pass when using Current Ratio. The proposed method also identifies both active and passive defects.
2

Health prognosis of electronics via power profiling

Cervantes, Jonathan A. January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
3

A Design Methodology for Physical Design for Testability

Almajdoub, Salahuddin A. 01 July 1996 (has links)
Physical design for testability (PDFT) is a strategy to design circuits in a way to avoid or reduce realistic physical faults. The goal of this work is to define and establish a speci c methodology for PDFT. The proposed design methodology includes techniques to reduce potential bridging faults in complementary metal-oxide-semiconductor (CMOS) circuits. To compare faults, the design process utilizes a new parameter called the fault index. The fault index for a particular fault is the probability of occurrence of the fault divided by the testability of the fault. Faults with the highest fault indices are considered the worst faults and are targeted by the PDFT design process to eliminate them or reduce their probability of occurrence. An implementation of the PDFT design process is constructed using several new tools in addition to other "off-the-shelf" tools. The first tool developed in this work is a testability measure tool for bridging faults. Two other tools are developed to eliminate or reduce the probability of occurrence of bridging faults with high fault indices. The row enhancer targets faults inside the logic elements of the circuit, while the channel enhancer targets faults inside the routing part of the circuit. To demonstrate the capabilities and test the eff ectiveness of the PDFT design process, this work conducts an experiment which includes designing three CMOS circuits from the ISCAS 1985 benchmark circuits. Several layouts are generated for every circuit. Every layout, except the rst one, utilizes information from the previous layout to minimize the probability of occurrence for faults with high fault indices. Experimental results show that the PDFT design process successfully achieves two goals of PDFT, providing layouts with fewer faults and minimizing the probability of occurrence of hard-to-test faults. Improvement in the total fault index was about 40 percent in some cases, while improvement in total critical area was about 30 percent in some cases. However, virtually all the improvements came from using the row enhancer; the channel enhancer provided only marginal improvements. / Ph. D.

Page generated in 0.0506 seconds