• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Síntese e caracterização estrutural de nanofios de GaP / Synthesis and structural characterization of GaP nanowires

Silva, Bruno César da, 1988- 07 April 2016 (has links)
Orientadores: Luiz Fernando Zagonel, Mônica Alonso Cotta / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2017-05-11T13:05:53Z (GMT). No. of bitstreams: 1 Silva, Bruno Cesar da_M.pdf: 3758085 bytes, checksum: 042d8ff5a8d495ad70b0f10c888cd418 (MD5) Previous issue date: 2016 / Made available in DSpace on 2017-06-14T17:38:47Z (GMT). No. of bitstreams: 1 Silva_BrunoCesarda_M.pdf: 3758085 bytes, checksum: 042d8ff5a8d495ad70b0f10c888cd418 (MD5) Previous issue date: 2016 / Resumo: Neste trabalho, estudamos a dinâmica de crescimento de nanofios de GaP crescidos pelo método VLS (Vapor-Líquido-Sólido) via Epitaxia por Feixe Químico (CBE), usando nanopartículas catalisadoras de ouro. Investigando o efeito da temperatura na dinâmica de crescimento de nanofios de GaP encontramos uma grande variedade de nanofios em cada amostra, caracterizadas por diferentes direções de crescimento e/ou morfologias, apresentando sempre uma população dominante. Com o aumento da temperatura (510°C) observamos uma transição drástica na morfologia da população dominante, de nanofios típicos para uma nova e inesperada morfologia assimétrica. Mostramos ainda que modificando o tamanho da nanopartícula catalisadora de 5nm para 20nm os nanofios assimétricos ainda são favorecidos a alta temperatura. Procurando compreender o mecanismo de formação dos nanofios assimétricos, mostramos que estas estruturas cristalizam-se na fase WZ, com baixa densidade de defeitos, comparadas às outras amostras. Além disso, mostramos que a assimetria destes nanofios não é oriunda de diferenças de polaridade nas facetas laterais ou formação de defeitos cristalográficos que pudessem modificar a dinâmica de crescimento de modo a levar à morfologia assimétrica. Desta forma, propomos um cenário de crescimento simplificado, no qual a estrutura assimétrica é formada pela combinação do crescimento de nanofios ordinários, via VLS, junto com estruturas que crescem livre de catalizador via mecanismo VS (Vapor-Sólido), estas duas estruturas então se juntam, transferindo material e dando lugar a facetas de menor energia, resultando na formação da estrutura assimétrica. Por fim, medidas de fotoluminescência mostram a emissão característica no verde do GaP WZ para os nanofios assimétricos, mesmo com a estrutura não estando passivada, confirmando a boa qualidade cristalina das nossas amostras / Abstract: In this work, we study the growth dynamics of GaP nanowires grown by VLS (Vapor-Liquid-Solid) method via Chemical Beam Epitaxy (CBE) using gold nanoparticles as catalyst. Investigating the effect of temperature on the growth dynamics of GaP nanowires we find a wide variety of nanowires in each sample, characterized by different growth directions and/or morphologies, always having a dominant population. With increasing temperature (510°C), we observed a dramatic transition in the morphology of the dominant population of typical nanowires to a new and unexpected asymmetric morphology. We also show that modifying the size of the catalyst nanoparticle from 5nm to 20mn the asymmetric nanowires are still favored at high temperature. Looking forward to understand the mechanism of formation of the asymmetric nanowires, we show that these structures crystallize in the WZ phase with low defect density when compared to the other samples. Furthermore, we show that the asymmetry of these nanowires is not derived from differences in polarity in side facets or the formation of crystallographic defects which might modify the growth dynamics so as to bring the asymmetric morphology. Thus, we propose a simplified growth scenario, in which the asymmetric structure is formed by growth combination of ordinary nanowires via VLS, along with structures that grow catalyst-free via VS (vapor-solid) mechanism, these two structures joined and by transferring materials facets with lower energy facets appear, resulting in the formation of asymmetrical structure. Finally, photoluminescence measurements show the characteristic emission in the green of WZ GaP for asymmetric nanowires, even with no passivation, which confirms the good crystalline quality of our samples / Mestrado / Física / Mestre em Física
2

Síntese e caracterização estrutural de nanofios de GaP / Synthesis and structural characterization of GaP nanowires

Silva, Bruno César da, 1988- 07 April 2016 (has links)
Orientadores: Luiz Fernando Zagonel, Mônica Alonso Cotta / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-30T22:54:17Z (GMT). No. of bitstreams: 1 Silva_BrunoCesarDa_M.pdf: 3896391 bytes, checksum: 02a6cadcf24734bcd669293dc473b75e (MD5) Previous issue date: 2016 / Resumo: Neste trabalho, estudamos a dinâmica de crescimento de nanofios de GaP crescidos pelo método VLS (Vapor-Líquido-Sólido) via Epitaxia por Feixe Químico (CBE), usando nanopartículas catalisadoras de ouro. Investigando o efeito da temperatura na dinâmica de crescimento de nanofios de GaP encontramos uma grande variedade de nanofios em cada amostra, caracterizadas por diferentes direções de crescimento e/ou morfologias, apresentando sempre uma população dominante. Com o aumento da temperatura (510°C) observamos uma transição drástica na morfologia da população dominante, de nanofios típicos para uma nova e inesperada morfologia assimétrica. Mostramos ainda que modificando o tamanho da nanopartícula catalisadora de 5nm para 20nm os nanofios assimétricos ainda são favorecidos a alta temperatura. Procurando compreender o mecanismo de formação dos nanofios assimétricos, mostramos que estas estruturas cristalizam-se na fase WZ, com baixa densidade de defeitos, comparadas às outras amostras. Além disso, mostramos que a assimetria destes nanofios não é oriunda de diferenças de polaridade nas facetas laterais ou formação de defeitos cristalográficos que pudessem modificar a dinâmica de crescimento de modo a levar à morfologia assimétrica. Desta forma, propomos um cenário de crescimento simplificado, no qual a estrutura assimétrica é formada pela combinação do crescimento de nanofios ordinários, via VLS, junto com estruturas que crescem livre de catalizador via mecanismo VS (Vapor-Sólido), estas duas estruturas então se juntam, transferindo material e dando lugar a facetas de menor energia, resultando na formação da estrutura assimétrica. Por fim, medidas de fotoluminescência mostram a emissão característica no verde do GaP WZ para os nanofios assimétricos, mesmo com a estrutura não estando passivada, confirmando a boa qualidade cristalina das nossas amostras / Abstract: In this work, we study the growth dynamics of GaP nanowires grown by VLS (Vapor-Liquid-Solid) method via Chemical Beam Epitaxy (CBE) using gold nanoparticles as catalyst. Investigating the effect of temperature on the growth dynamics of GaP nanowires we find a wide variety of nanowires in each sample, characterized by different growth directions and/or morphologies, always having a dominant population. With increasing temperature (510°C), we observed a dramatic transition in the morphology of the dominant population of typical nanowires to a new and unexpected asymmetric morphology. We also show that modifying the size of the catalyst nanoparticle from 5nm to 20mn the asymmetric nanowires are still favored at high temperature. Looking forward to understand the mechanism of formation of the asymmetric nanowires, we show that these structures crystallize in the WZ phase with low defect density when compared to the other samples. Furthermore, we show that the asymmetry of these nanowires is not derived from differences in polarity in side facets or the formation of crystallographic defects which might modify the growth dynamics so as to bring the asymmetric morphology. Thus, we propose a simplified growth scenario, in which the asymmetric structure is formed by growth combination of ordinary nanowires via VLS, along with structures that grow catalyst-free via VS (vapor-solid) mechanism, these two structures joined and by transferring materials facets with lower energy facets appear, resulting in the formation of asymmetrical structure. Finally, photoluminescence measurements show the characteristic emission in the green of WZ GaP for asymmetric nanowires, even with no passivation, which confirms the good crystalline quality of our samples / Mestrado / Física / Mestre em Física
3

Metal-Assisted Growth of III-V Nanowires By Molecular Beam Epitaxy

Plante, Martin 02 1900 (has links)
<p> The mechanisms operating during the metal-assisted growth of III-V nanowires (NWs) by molecular beam epitaxy on (1 1 l)B substrates were investigated through a series of experiments aimed at determining the influence of growth conditions on the morphology and crystal structure. Using GaAs as the principal material system for these studies, it is shown that a good control of these two characteristics can be achieved via a tight control of the temperature, V /III flux ratio, and Ga flux. Low and intermediate growth temperatures of 400°C and 500°C resulted in a strongly tapered morphology, with stacking faults occurring at an average rate of 0.1 nm^(-1). NWs with uniform diameter and the occurrence of crystal defects reduced by more than an order of magnitude were achieved at 600°C, a V /III flux ratio of 2.3, and a Ga impingement rate on the surface of 0.07 nm/s, and suggest the axial growth is group V limited. Increasing the flux ratio favored uniform sidewall growth, thus making the process suitable for the fabrication of core-shell structures. Further observation of steps on the sidewall surface of strongly tapered NWs suggests that radial growth of the shell proceeds in a layer-by-layer fashion, with the edge progressing in a step-flow mode toward the tip. </p> <p> From the experimental considerations, an analytical description of the growth is proposed, based on a simple material conservation model. Direct impingement of growth species on the particle, coupled to their diffusion from the sidewall and the substrate surface, are considered in the derivation of expressions for the time evolution of both axial and radial growths. Factors that take into account the nonunity probability of inclusion of group III adatoms in the axially growing crystal are introduced. Moreover, a step-mediated growth is included to describe the axial evolution of the shell. </p> / Thesis / Doctor of Philosophy (PhD)
4

Simulation of III-V Nanowires for Infrared Photodetection

Azizur-Rahman, Khalifa M. January 2016 (has links)
The absorptance in vertical nanowire (nw) arrays is typically dominated by three optical phenomena: radial mode resonances, near-field evanescent wave coupling, and Fabry–Perot (F-P) mode resonances. The contribution of these optical phenomena to GaAs, InP and InAs nw absorptance was simulated using the finite element method. The study compared the absorptance between finite and semi-infinite nws with varying geometrical parameters, including the nw diameter (D), array period (P), and nw length (L). Simulation results showed that the resonance peak wavelength of the HE1n radial modes linearly red-shifted with increasing D. The absorptance and spectral width of the resonance peaks increased as L increased, with an absorptance plateau for very long nws that depended on D and P. Near-field coupling between neighbouring nanowires (nws) was observed to increase with increasing diameter to period ratio (D/P). The effect of F-P modes was more pronounced for shorter nws and weakly coupled light. Based on the collective observation of the correlation between nw geometry and optical phenomena in GaAs, InP, and InAs nw arrays, a periodic array of vertical InSb nws was designed for photodetectors in the low-atmospheric absorption window (λ = 3-5 μm) within the mid-wavelength infrared (MWIR) spectrum (λ = 3-8 μm). Simulations, using the finite element method, were implemented to optimize the nw array geometrical parameters (D, P, and L) for high optical absorptance (~0.8), which exceeded that of a thin film of equal thickness. The results further showed that the HE1n resonance wavelengths in InSb nw arrays can be tuned by adjusting D and P, thus enabling multispectral absorption throughout the near infrared (NIR) to MWIR region. Optical absorptance was investigated for a practical photodetector consisting of a vertical InSb nw array embedded in bisbenzocyclobutene (BCB) as a support layer for an ultrathin Ni contact layer. Polarization sensitivity of the photodetector was examined. Lastly, how light flux enters the nw top and sidewalls on HE11 resonance was investigated. / Dissertation / Doctor of Philosophy (PhD)
5

ELECTRICAL CHARACTERIZATION AND OPTIMIZATION OF GALLIUM ARSENIDE NANOWIRE ENSEMBLE DEVICES

Chia, Andrew 10 1900 (has links)
<p>III-V nanowire (NW) ensemble devices were fabricated using novel approaches to address key NW optoelectronic issues concerning electrical contacts, doping, surface effects and underlying electrostatics physics.</p> <p>NWs were first embedded in a filling medium, thus achieving low sheet resistance front contacts while preventing shunts. Various filling materials were assessed for porosity, surface roughness and thermal stability, giving Cyclotene as an ideal filing material. Sonication was also introduced as a novel method to achieve perfect planarization.</p> <p>The presence of the Cyclotene also enabled the NWs to be characterized precisely and easily by secondary ion mass spectrometry (SIMS) to give the NW dopant concentration with excellent spatial resolution. Additionally, SIMS characterization demonstrated the ability to characterize the height uniformity of individual segments in a heterostructure NW ensemble.</p> <p>The focus of the work shifted towards surface effects on NW device performance. Therefore, Poisson's equation was solved to provide a comprehensive model of NW surface depletion as a function of interface state density, NW radius and doping density. Underlying physics was examined where surface depletion was found to significantly reduce the conductivity of thin NWs, leading to carrier inversion for some.</p> <p>This model was then applied in conjunction with a transport model to fit current-voltage curves of an AlInP-passivated GaAs NW ensemble device. A 55% decrease in surface state density was achieved upon passivation, corresponding to an impressive four order of magnitude increase in the effective carrier concentration. Additionally, conventional and time-resolved photoluminescence measurements showed intensity and carrier lifetime improvement greater than 20x upon passivation.</p> <p>Finally, the model was extended to describe radial pn junction NWs with surface depletion to give radial energy band profiles for any arbitrary set of NW parameters. Specific cases were analyzed to extract pertinent underlying physics, while the built-in potential was optimized for the design for an optimal device.</p> / Doctor of Philosophy (PhD)
6

Étude de nanostructures de semiconducteurs II-VI par sonde atomique tomographique / Study of II-VI semiconductors nanostrures by atom probe tomography

Benallali, Hammouda 08 April 2015 (has links)
Les nanostructures de semiconducteurs II-VI ont de nombreuses applications en microélectronique, optoélectronique et photonique. Notamment, les boites quantiques II-V peuvent servir de source de photons uniques. Dans cette étude, nous nous sommes intéressés à la caractérisation chimique et structurale des nanostructures de semiconducteurs II-VI (boites quantiques (BQs) auto-organisées, nanofils II-VI et III-V …) par sonde atomique tomographique (SAT). Dans un premier temps, nous avons optimisé les conditions d’analyse des semiconducteurs III-V et II-VI par SAT. Ensuite, nous avons étudié les compositions chimiques des interfaces II-VI/III-V en montrant la formation d’un composé Ga2.7Se3 à l’interface ZnSe/GaAs et un mélange de cations (Ga, Zn) à l’interface ZnTe/InAs. Les mesures de compositions chimiques et des tailles des boites quantiques en trois dimensions par SAT ont permis de faire une corrélation avec les mesures optiques. Nous nous sommes aussi intéressés à l’étude des mécanismes de croissance des nanofils GaAs et ZnTe ainsi que des BQs (CdTe) insérés dans des nanofils ZnTe en analysant la composition chimique des catalyseurs, les BQs dans les nanofils aussi que la base des nanofils. Ces mesures montrent que les boites quantiques sont formées d’un fort mélange CdxZn1-xTe. Un scénario basé sur la diffusion de surface a été proposé pour expliquer la croissance ainsi que le mélange entre Zn/Cd pour les BQs insérées dans les nanofils. / Nanostructures of II-VI nanostructure have many applications in microelectronics, optoelectronics and photonics. For example, II -V quantum dots have shown the ability to be a source of single photons. In this work, we performed in the chemical and structural characterization of nanostructures of II-VI semiconductors (self- organized quantum dots (QDs), nanowires II-VI and III- V ...) by atom probe tomography (APT). Firstly, the analysis conditions of III-V and II- VI semiconductors by APT were optimized. Then, we studied the chemical composition of II-VI/III-V interfaces and showed the formation of a Ga2.7Se3 compound at the ZnSe/GaAs interface and the (Ga, Zn) cations mixing at the ZnTe/InAs interface. The measurements of the chemical composition and the sizes of quantum dots in three dimensions by APT allowed making a correlation with optical measurements. We studied also growth mechanisms of GaAs, ZnTe nanowire and the CdTe QDs inserted in ZnTe nanowires by analyzing the chemical composition of the catalysts QDs and nanowires basis. These measurements show that the quantum dots are formed of a strong mixing of CdxZn1-xTe. A scenario based on surface diffusion has been proposed to explain the growth and the mixing between Zn/Cd for the QDs.
7

Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy

Tauchnitz, Tina 12 March 2020 (has links)
GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process. The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform. This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx and their interaction with SiOx, and confirms theoretical predictions about the so-called nucleation antibunching, the temporal anti-correlation of consecutive nucleation events. In the second part of this thesis, an alternative method called droplet-confined alternate-pulsed epitaxy (DCAPE) for the self-catalyzed growth of GaAs nanowires and GaAs/AlxGa1-xAs axial nanowire heterostructures has been developed. DCAPE enables nanowire growth at unconventional, low temperatures in the range of 450-550 °C and is compatible with the standard Si-CMOS platform. The novel growth approach allows one to precisely control the crystal structure of the nanowires and, thus, to produce defect-free pure zinc blende GaAs-based nanowires. The strength of DCAPE is further highlighted by the controlled growth of GaAs/AlxGa1-xAs axial quantum well nanowires with abrupt interfaces and tunable thickness and Al-content of the AlxGa1-xAs sections. The GaAs/AlxGa1-xAs axial nanowire heterostructures are interesting for applications as single photon emitters with tunable emission wavelength, when they are overgrown with thick lattice-mismatched InxAl1-xAs layers in a core-shell fashion. All results presented in this thesis contribute to paving the way for a successful monolithic integration of highly uniform GaAs-based nanowires with controlled number density, dimensions and crystal structure on the mature Si platform. / GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse. Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen.

Page generated in 0.0429 seconds