• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of IMRT Pre-Treatment Dose Verification Using a-Si Electronic Portal Imaging Devices

Nichita, Eleodor 04 1900 (has links)
<p>Intensity-Modulated Radiation Treatment (IMRT) requires patient-specific quality assurance measurements, which can benefit from the convenience of using an Electronic Portal Imaging Device (EPID) for dose verification. However, EPIDs have limitations stemming from the non-uniform backscatter due to the support-arm as well as from scatter, glare, and an increased sensitivity to low-energy photons. None of these effects is typically accounted for in a treatment planning system (TPS) model, resulting in errors in calculated EPID response of up to 6%. This work addresses the non-uniform backscatter by directly incorporating a support-arm backscatter region into the TPS geometry. The shape of the backscatter region is adjusted iteratively until the TPS-calculated flood-field planar dose matches the flood-field EPID image The scatter, glare and increased low-energy response are addressed by using a radially-dependent Point-Spread Function (Kernel). The kernel is fitted using a least-squares method so that it best reproduces the EPID-acquired image for a checkerboard field. The backscatter-correction method is implemented for a Varian Clinac equipped with a 40 cm x 30 cm (512 x 384 pixel) EPID and a Pinnacle<sup>3</sup> TPS and tested for several rectangular and IMRT fields. The scatter, glare and energy-response correction kernel is implemented and tested for a simulated checkerboard field and a simulated IMRT field. Agreement between the EPID-measured image and TPS-calculated planar dose map is seen to improve from 6% to 2% when the backscatter region is added to the Pinnacle<sup>3</sup> model. Agreement between the simulated EPID images and simulated TPS images is improved from 14% to approx. 1% when the radially-dependent kernel is used. Simultaneous application of both the backscatter region and Point-Spread Function is a promising direction for future investigations.</p> / Master of Science (MSc)

Page generated in 0.1351 seconds