• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1083
  • 984
  • 232
  • 108
  • 96
  • 69
  • 43
  • 33
  • 26
  • 25
  • 18
  • 16
  • 7
  • 7
  • 6
  • Tagged with
  • 3336
  • 842
  • 362
  • 288
  • 278
  • 274
  • 256
  • 213
  • 205
  • 198
  • 198
  • 188
  • 165
  • 163
  • 162
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Organization and consequences of functional responses in microglia upon activation of the TLR4 complex / CD14 as a gate keeper in microglial responses to infection and damage

Janova, Hana 22 September 2014 (has links)
Mikroglia sind residente Makrophagen-artige Zellen des Zentralnervensystems (ZNS), die das Gewebe kontinuierlich auf Anzeichen homöostatischer Störungen überwachen. Als die wesentlichen immunkompetenten Effektorzellen im Hirnparenchym exprimieren sie eine Vielzahl von Rezeptoren für pathogen-assoziierte molekulare Strukturmuster (pathogen-associated molecular patterns, PAMPs). Zu diesen Rezeptoren zählt der Toll-like receptor (TLR) 4, der nicht nur Reaktionen der Mikroglia auf bakterielle Infektionen, sondern auch auf Gewebe Schädigungen ermöglicht. Stimulation des TLR4 mit bakteriellem Lipopolysaccharid (LPS) und endogenen schädigung-sassoziierten molekularen Strukturen (damage-associated molecular patterns, DAMPs), die durch Gewebebeeinträchtigung freigesetzt werden, löst sowohl TRIF- als auch MyD88-abhängige Signalkaskaden aus. Die damit induzierte Freisetzung von Zytokinen und Chemokinen rekrutiert und instruiert periphere Immunzellen für eine Protektion und unterstützende Geweberegeneration des ZNS. Wir zeigen hier, dass der TLR4-Korezeptor CD14 ein essenzieller gate keeper für die Generierung von Immunantworten im ZNS ist, die durch LPS oder E. coli-Verabreichung, aber auch durch mechanisches Trauma und ischämischen Schlaganfall ausgelöst werden. In gewissem Gegensatz zu extraneuralen Makrophagen nutzen Mikroglia CD14 zur Erlangung einer extremen Sensitivität gegenüber sehr geringen LPS-Mengen. Gleichzeitig schützt CD14 Mikroglia vor überschießenden Reaktionen auf hohe LPS-Dosen und verhindert dabei insbesondere die exzessive Produktion von CXCL1, eines chemoattraktiven Signals für neutrophile Granulozyten. Entsprechend unterstützt CD14 die ZNS-Rekrutierung von Monozyten und Neutrophilen durch niedrige LPS-Dosen, während es die verstärkte Einwanderung von Neutrophilen durch hohe Dosen von LPS oder E. coli verhindert. Als eine besonders wichtige Funktion beschreiben wir dabei die absolute CD14-Abhängigkeit DAMP-ausgelöster und TLR4-vermittelter Immunreaktionen. CD14-Defizienz (unter cd14-/--Bedingungen) oder CD14 Blockade (durch Antikörper) löschen mikrogliale Reaktionen, die durch Plasma-Fibronektin (als repräsentatives DAMP-Molekül) ausgelöst werden können, komplett aus und beeinträchtigen die Leukozyten-Infiltration nach ZNS-Trauma. Bei einer ischämischen ZNS-Schädigung weisen cd14-/--Mäuse im Gehirn nicht nur weniger Monozyten auf, sondern gleichzeitig ein vergrößertes Infarktvolumen. Wir konnten für Interferon (IFN) b eine Schlüsselfunktion in der CD14-vermittelten Eindämmung der CXCL1-Synthese darstellen, die auf eine negative CD14/TLR4-TRIF-IFNβ-INAR1-Jak- Rückkopplung für MyD88-getriebene Chemokine schließen lässt. Obwohl CD14 somit TLR4-vermittelte Reaktionen auf infektiöse und nicht-infektiöse Agenzien orchestriert, wird seine Expression durch verschiedene TLR-Liganden und Zytokine reguliert. Letztlich unterliegen damit CD14-kontrollierte Funktionen selbst einer komplexen Kontrolle durch ZNS-residente und eingewanderte periphere Zellen. Diese Regulationen können über die Einbeziehung oder den Ausschluss der Kapazitäten des TLR4-Komplexes für eine Schadenserkennung während der ZNS-Reaktionen in unterschiedlichsten pathologischen Szenarien entscheiden.
352

Role of the Capsid Helix 4-5 Loop in Equine Infectious Anemia Virus Infection

Bollman, Brooke Ann 18 March 2013 (has links)
The lentiviral capsid core, which encapsulates the viral RNA genome, is delivered into the target cell cytoplasm during the viral entry process. In the cytoplasm, the conical core undergoes morphological changes, which are termed uncoating. Proper uncoating has been shown to be critical for the infectivity of the lentivirus HIV-1. In addition, the HIV-1 capsid protein is critical for the process of nuclear import of the preintegration complex (PIC). The lentivirus equine infectious anemia virus (EIAV) shares many similarities to HIV-1, including similarities in the capsid protein. In particular, both HIV-1 and EIAV capsid contain a proline-rich loop region in the amino terminal domain of capsid between helices 4 and 5. The host cellular factor cyclophilin A binds this loop in HIV-1 and is critical for proper uncoating. We hypothesized that this helix 4-5 loop was also critical for EIAV infectivity at some early step in the viral infection cycle. We created a panel of amino acid substitution mutations in this loop region. Some of the mutations resulted in severely deleterious effects on EIAV infectivity. Some mutations caused a slight increase in infectivity. The deleterious mutations did not affect uncoating or reverse transcription but appeared to block nuclear import of the PIC. Those mutations in which infectivity was slightly increased did not exhibit significantly different phenotypes from wild-type EIAV at any of the stages examined. The results of this study lend further support to the role of capsid as a determinant of nuclear import and suggest that viral and cellular factors critical to HIV-1 import may also be applicable to EIAV. Future research should focus on identifying the causes of the defects in nuclear import observed for some mutants, as well as attempt to identify the reason for the infectivity increase in others. In addition, inclusion of EIAV in future studies of nuclear import involving HIV-1 can broaden the scope of the data to lentiviruses in general rather than HIV-1 in particular.
353

Growth of Pseudomonas cepacia in double distilled water

Doyle, Jack David January 1981 (has links)
No description available.
354

Nod1 and Nod2 in Innate Immune Responses, Adaptive Immunity and Bacterial Infection

Le Bourhis, Lionel 13 April 2010 (has links)
The last decade has been witness to a number of seminal discoveries in the field of innate immunity. The discovery that microbial molecules and endogenous danger signals can be detected by germ-line encoded receptors has changed the way we study the immune system. Indeed, the characterization of Toll in Drosophila as a sensor of microbial products in 1997 then led to the discovery of a family of Toll Like Receptors (TLRs) in mammals. TLRs are critical for the induction of inflammatory responses and the generation of a successful adaptive immune response. The array of ligands that these transmembrane proteins recognized mediates defense against bacteria, viruses, fungus and parasites, as well as, possibly, cancerous cells. In addition to this membrane-bound family of recognition proteins, two families of pattern recognition receptors have been recently shown to respond to microbial and chemical ligands within the cytosol. These represent the Nod Like Receptors (NLRs) and RIGI-like helicase receptor (RLH) families. Nod1 and Nod2 are members of the NLR family of proteins, which are responsible for the recognition of components derived from the bacterial cell wall, more precisely, moieties of peptidoglycan. As such, Nod1 and Nod2 are implicated in the recognition and the defense against bacterial pathogens. Importantly, the genes encoding these two proteins have also been linked to the etiology of several inflammatory disorders such as Crohn’s disease and asthma. In this thesis, we show that recognition of Nod1 and Nod2 ligands generates a rapid and transient inflammatory response in vivo. When co-injected with a model protein, Nod1 and Nod2 ligands exhibit adjuvant properties that lead to the generation of an antigen-specific Th2 type adaptive immune response. Surprisingly, recognition of the Nod1 ligand in non-hematopoietic cells is critical for the generation of this immune response. In contrast, TLRs classically tip the balance towards a Th1 response and interestingly, co-injection of TLR and Nod ligands synergize to generate a more potent immune response characterized by the generation of Th1, Th2 and Th17 T cell respones. To study the role of Nod1 and Nod2 in the context of a bacterial infection in vivo, we used an intestinal mouse pathogen, Salmonella enterica serovar Typhimurium. We were able to show that Nod1-deficient mice, but not Nod2-deficient mice, are more susceptible to the strain of this bacterium, which enters the host through the active pickup in the intestinal lumen by underlying myeloid cells. This sampling mechanism is mediated by a subset of dendritic cells that populate the intestinal lamina propria. Accordingly, the defect seen in Nod1-deficient mice localizes to the mucosal barrier where these dendritic cells appear to have an impaired response towards the bacteria. Taken together, these results increase our knowledge on the general role of Nod1 and Nod2 in immunity and might generate new avenues of research and potential therapeutic targets.
355

Characterization of an Equine Rhinitis A Virus (ERAV/ON/05) and Development of an Experimental Infection Model in Horses

Diaz-Mendez, Andres 15 May 2012 (has links)
In 2005 an equine rhinitis A virus (ERAV) isolate was recovered from a febrile horse during a respiratory outbreak in Ontario. This isolate (ERAV/ON/05) was propagated in cell culture and used to study its genomic characteristics and to investigate the clinical features in experimentally infected ponies. The fulllength genome of this isolate was sequenced and compared with other ERAV available in GenBank. The isolate genome is 7839 nucleotides (nts) in length with a variable 5’UTR and a more conserved 3’UTR. When the isolate was compared to other reported ERAV, an insertion of 13 nts in the 5’UTR was identified. Phylogenetic analysis demonstrated that ERAV/ON/05 was closely related to the ERAV/PERV isolate, which was recovered in 1962 in the United Kingdom. An experimental model was developed to study the clinical infection in naïve healthy ponies (ERAV/ON/05 n=4 and placebo n=4). ERAV/ON/05 induced clinical respiratory disease compared to placebo. The clinical signs consisted of pyrexia, nasal discharge, increased and abnormal lung sounds, increased size of submandibular lymph nodes and persistent mucopus in the trachea (up to 21 days post-infection). The virus was isolated from the lower and upper airways up to day 7 post-infection, corresponding with the detection of neutralizing ERAV antibodies. Assessment of the cytokine profile from bronchoalveolar lavage (BAL) cells demonstrated that this infection induced down-regulation of the mRNA expression of IL-4. One year later, four previously infected ponies with neutralizing antibodies to ERAV were assigned to a reinfection trial. None of the re-infected ponies developed clinical disease, and only one animal had a four-fold increase in antibody titres to ERAV. Attempts to recover the virus from the re-infected ponies using cell culture were negative; however, a down-regulation of the mRNA expression of IL-4 and IFN-β was identified in BAL cells. In conclusion, this study shows that the genome of ERAV has not significantly changed in the last 50 years and more importantly the virus induces clinical respiratory disease similar to other common equine respiratory viruses.
356

Prospective Evaluation of the Epidemiology and Microbiology of Surgical Site Infections

Turk, Ryen 28 August 2013 (has links)
Surgical site infections (SSIs) are an emerging cause of increased morbidity, mortality, and treatment cost, in veterinary medicine. Medical records were searched to evaluate for associations that could increase the risk of developing SSIs. Logistic regression was used to analyze the risk factors statistically, to determine their influence on SSI risk. An SSI incidence rate of 3.0% was found in this study for all small animal surgical procedures performed from September 2010 to July 2011, with implants, hypotension and surgical classification associated with increased likelihood of SSI. Active surveillance is crucial for the development of methods to prevent SSI’s. Biofilms contribute to the antimicrobial resistance properties commonly found in bacteria such as methicillin-resistant Staphylococcus pseudintermedius, which is found in canines. An enzyme known as DispersinB was studied to assess its effect on biofilm formation and degradation. DispersinB prevented the formation and eradicated biofilm in vitro. In vivo testing is required to further assess the effects of DispersinB. / Ontario Veterinary College Pet Trust, Canadian Institutes of Health Research, Kane Biotchech
357

Inter- and Intra-kingdom Signaling in Bacterial Chemotaxis, Biofilm Formation, and Virulence

Hegde, Manjunath 2011 December 1900 (has links)
Cell-cell communication between bacteria, belonging to the same species or to different species (Intra-kingdom signaling), or communication between bacteria and their animal host (Inter-kingdom signaling) is mediated through different chemical signals that are synthesized and secreted by bacteria or the host and is crucial for the survival of bacteria inside their host. The overall goal of this work was to understand the role of inter- and intra-kingdom signaling in phenotypes such as chemotaxis, colonization and biofilm formation, and virulence that are associated with infections caused by the human gastrointestinal (GI) tract pathogens. A part of our work also aimed at developing microfluidics-based models to study inter- and intra-kingdom signaling in biofilm formation, inhibition, and dispersal. We showed that norepinephrine (NE), an important host signal produced during stress, increases human opportunistic pathogen Pseudomonas aeruginosa growth, motility, attachment, and virulence, and also showed that the actions of NE are mediated primarily through the LasR, and not the RhlR QS system. We investigated the molecular mechanism underlying the chemo-sensing of the intra-kingdom signal autoinducer-2 (AI-2) by pathogens Escherichia coli and Salmonella typhimurium by performing different chemotaxis assays (capillary, microPlug and microFlow assays), and discovered that AI-2 is a potent attractant for E. coli and S. typhimurium, and that the Tsr chemoreceptor and periplasmic AI-2 binding protein LsrB are necessary for sensing AI-2, although uptake of AI-2 into the cytoplasm is not required. We concluded that LsrB, when bound to AI-2, interacts directly with the periplasmic domain of Tsr primarily at the Thr-61 and Asp-63 residues of LsrB, making LsrB the first known periplasmic-protein partner for Tsr. We fabricated a simple user-friendly microfluidic flow cell (microBF) device that can precisely measure the effect of a wide range of concentrations of single or combinations of two or more soluble signals on bacterial biofilm formation and development. We also constructed a synthetic biofilm circuit that utilizes the Hha and BdcA dispersal proteins of E. coli along with a quorum sensing (QS) switch that works based on the accumulation of the signal N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-o-C12HSL) and implemented it in an upgraded �BF device. We showed that a QS system may be utilized with biofilm dispersal proteins to control consortial biofilm formation by removing an existing biofilm and then removing the biofilm that displaced the first one. These types of synthetic QS circuits may be used to pattern biofilms by facilitating the re-use of platforms and to create sophisticated reactor systems that will be used to form bio-refineries.
358

HIV protease inhibitors and drug disposition

Eagling, Victoria Anne January 1999 (has links)
No description available.
359

The influence of neutrophils and mononuclear leucocytes on the fibrinolytic response to severe sepsis

Haj, Montaser A. January 1995 (has links)
This study identified striking increase in plasma of plasminogen activator inhibitor 1(PAI-I), a major inhibitor of fibrinolysis levels in septic patients who are non-neutropenic. Neutropenic patients show less striking changes. Where shock occurs both groups of patients show very high levels of PAI-1. These observations suggest a role for leucocytes in PAI production. In the second section neutrophils are identified as containing PAI-1 in normal subjects, the levels rising significantly in sepsis. Monocytes contain no PAI-1 but do contain Plasminogen activator inhibitor 2(PAI-2) levels of which inhibitor also rise in sepsis. Normal neutrophils contained no PAI-2 but neutrophils from septic patients contained significant quantities of this inhibitor. In the third section mononuclear cells from septic patients are identified as enhancing PAI-1 production in cultured endothelial cell (EC). Septic neutrophils have a more complex effect on EC. Mononuclear cells and neutrophils therefore, both contribute to the fibrinolytic inhibition of septic disorders but by different mechanisms. Each cell type contains one of the major inhibitor of plasminogen activator and levels of these rise in sepsis. Both cell types from septic patients promote greater release of PAI-1 from endothelial cells than do cells from normal individuals. Inhibition of fibrinolysis by leucocytes may contribute to fibrin persistence in sepsis. This may be useful in localizing infection. If generalized, it may contribute to vascular occlusive complications of sepsis such as shock lung, acute renal failure or digital gangrene. Absence of leucocytes may account for the apparent reduction of vascular occlusive complications in leucopenic septic patients.
360

Endolethial-neutrophil interactions in an in vitro model of sepsis

Blaylock, Morgan Graeme January 2000 (has links)
No description available.

Page generated in 0.1705 seconds