• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 12
  • 12
  • 9
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Calibração linear assimétrica / Asymmetric Linear Calibration

Cléber da Costa Figueiredo 27 February 2009 (has links)
A presente tese aborda aspectos teóricos e aplicados da estimação dos parâmetros do modelo de calibração linear com erros distribuídos conforme a distribuição normal-assimétrica (Azzalini, 1985) e t-normal-assimétrica (Gómez, Venegas e Bolfarine, 2007). Aplicando um modelo assimétrico, não é necessário transformar as variáveis a fim de obter erros simétricos. A estimação dos parâmetros e das variâncias dos estimadores do modelo de calibração foram estudadas através da visão freqüentista e bayesiana, desenvolvendo algoritmos tipo EM e amostradores de Gibbs, respectivamente. Um dos pontos relevantes do trabalho, na óptica freqüentista, é a apresentação de uma reparametrização para evitar a singularidade da matriz de informação de Fisher sob o modelo de calibração normal-assimétrico na vizinhança de lambda = 0. Outro interessante aspecto é que a reparametrização não modifica o parâmetro de interesse. Já na óptica bayesiana, o ponto forte do trabalho está no desenvolvimento de medidas para verificar a qualidade do ajuste e que levam em consideração a assimetria do conjunto de dados. São propostas duas medidas para medir a qualidade do ajuste: o ADIC (Asymmetric Deviance Information Criterion) e o EDIC (Evident Deviance Information Criterion), que são extensões da ideia de Spiegelhalter et al. (2002) que propôs o DIC ordinário que só deve ser usado em modelos simétricos. / This thesis focuses on theoretical and applied estimation aspects of the linear calibration model with skew-normal (Azzalini, 1985) and skew-t-normal (Gómez, Venegas e Bolfarine, 2007) error distributions. Applying the asymmetrical distributed error methodology, it is not necessary to transform the variables in order to have symmetrical errors. The frequentist and the Bayesian solution are presented. The parameter estimation and its variance estimation were studied using the EM algorithm and the Gibbs sampler, respectively, in each approach. The main point, in the frequentist approach, is the presentation of a new parameterization to avoid singularity of the information matrix under the skew-normal calibration model in a neighborhood of lambda = 0. Another interesting aspect is that the reparameterization developed to make the information matrix nonsingular, when the skewness parameter is near to zero, leaves the parameter of interest unchanged. The main point, in the Bayesian framework, is the presentation of two measures of goodness-of-fit: ADIC (Asymmetric Deviance Information Criterion) and EDIC (Evident Deviance Information Criterion ). They are natural extensions of the ordinary DIC developed by Spiegelhalter et al. (2002).
12

Explorando caminhos de mínima informação em grafos para problemas de classificação supervisionada

Hiraga, Alan Kazuo 05 May 2014 (has links)
Made available in DSpace on 2016-06-02T19:06:12Z (GMT). No. of bitstreams: 1 5931.pdf: 2655791 bytes, checksum: 6eafe016c175143a8d55692b4681adfe (MD5) Previous issue date: 2014-05-05 / Financiadora de Estudos e Projetos / Classification is a very important step in pattern recognition, as it aims to categorize objects from a set of inherent features, through its labeling. This process can be supervised, when there is a sample set of labeled training classes, semi-supervised, when the number of labeled samples is limited or nearly inexistent, or unsupervised, where there are no labeled samples. This project proposes to explore minimum information paths in graphs for classification problems, through the definition of a supervised, non-parametric, graph-based classification method, by means of a contextual approach. This method proposes to construct a graph from a set of training samples, where the samples are represented by vertices and the edges are links between samples that belongs to a neighborhood system. From the graph construction, the method calculates the local observed Fisher information, a measurement based on the Potts model, for all vertices, identifying the amount of information that each sample has. Generally, different class vertices when connected by an edge, have a high information level. After that, it is necessary to weight the edges by means of a function that penalizes connecting vertices with high information. During this process, it is possible to identify and select high information vertices, which will be chosen to be prototype vertices, namely, the nodes that define the classes boundaries. After the definition, the method proposes that each prototype sample conquer the remaining samples by offering the shortest path in terms of information, so that when a sample is conquered it receives the label of the winning prototype, occurring the classification. To evaluate the proposed method, statistical methods to estimate the error rates, such as Hold-out, K-fold and Leave-One- Out Cross-Validation will be considered. The obtained results indicate that the method can be a viable alternative to the existing classification techniques. / A classificação é uma etapa muito importante em reconhecimento de padrões, pois ela tem o objetivo de categorizar objetos a partir de um conjunto de características inerentes a ele, atribuindo-lhe um rótulo. Esse processo de classificação pode ser supervisionado, quando existe um conjunto de amostras de treinamento rotuladas que representam satisfatoriamente as classes, semi-supervisionado, quando o conjunto de amostras é limitado ou quase inexistente, ou não-supervisionado, quando não existem amostras rotuladas. Este trabalho propõe explorar caminhos de mínima informação em grafos para problemas de classificação, por meio da criação de um método de classificação supervisionado, não paramétrico, baseado em grafos, seguindo uma abordagem contextual. Esse método propõe a construção de um grafo a partir do conjunto de amostras de treinamento, onde as amostras serão representadas pelos vértices e as arestas serão as ligações entre amostras pertencentes a uma relação de adjacência. A partir da construção do grafo o método faz o calculo da informação de Fisher Local Observada, uma medida baseada no modelo de Potts, para todos os vértices, identificando o grau de informação que cada um possui. Geralmente vértices de classes distintas quando conectados por uma aresta possuem alta informação (bordas). Feito o calculo da informação, é necessário ponderar as arestas por meio de uma função que penaliza a ligação de vértices com alta informação. Enquanto as arestas são ponderadas é possível identificar e selecionar vértices altamente informativos os quais serão escolhidos para serem vértices protótipos, ou seja, os vértices que definem a região de borda. Depois de ponderadas as arestas e definidos os protótipos, o método propõe que cada protótipo conquiste as amostras oferecendo o menor caminho até ele, de modo que quando uma amostra é conquistada ela receba o rótulo do protótipo que a conquistou, ocorrendo a classificação. Para avaliar o método serão utilizados métodos estatísticos para estimar as taxas de acertos, como K-fold, Hold-out e Leave-one-out Cross- Validation. Os resultados obtidos indicam que o método pode ser um uma alternativa viável as técnicas de classificação existentes.

Page generated in 0.0166 seconds