• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 20
  • 10
  • 10
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 143
  • 143
  • 19
  • 17
  • 17
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Analysis of water vapour mixing ratio profiles in the Arctic from Raman lidar measurements during the MOSAiC-campaign

Seidel, Clara 04 April 2023 (has links)
For the first time, vertical water vapour profiles were measured in the Central Arctic North of 85°N during the MOSAiC campaign (Multidisciplinary drifting Observatory for the Study of Arctic Climate). Continuous measurements of the Raman lidar PollyXT are used to retrieve high-resolved vertical profiles of the water vapour mixing ratio (WVMR) during the polar night. The collected data are calibrated and evaluated by use of selected clear-sky profiles between 25 October 2019 and 29 February 2020. Three different calibration methods are applied using reference data from radiosonde launches or microwave radiometer (MWR) measurements, respectively. The calibration with the least error results from a linear fit between collocated radiosonde and lidar measurements and delivers a final calibration constant of 15.96 ± 0.37 g/kg for the period from 25 Oct 2019 to 29 Feb 2020. The calibrated WVMR profiles are analysed regarding the vertical distribution of water vapour in the Arctic, its impact on the downward thermal-infrared radiation (DTIR) at the surface, and its relation to the Arctic Oscillation (AO) index as a measure for the general atmospheric circulation. The Arctic atmosphere is very dry during the winter time with WVMR values below 2 g/kg. The vertical water vapour distribution is strongly related to the temperature profile. Layers with higher WVMR values are often capped by temperature inversions. Layers with higher integrated water vapour values (IWV) are located either close to the surface (coupled) or in an elevated layer (decoupled), related to local or advective processes, respectively. The impact of the vertical distributed water vapour on the clear-sky DTIR at the surface was investigated by evaluating the evolution of the air mass at the measurement location over several hours for seven clear-sky cases. The relation between the measured DTIR at the surface and the lidar IWV shows a linear correlation for each case, but with a shift in the radiation values depending on the temperature of the vertical distributed water vapour. The impact of the IWV on the DTIR is determined to be 9.33 − 15.03 W/kg from the example cases. Beside, a linear correlation is found between the temperature of the vertical distributed water vapour and the radiation temperature of the sky, which is derived from the Stefan-Boltzmann’s Law. Both results depict the high impact of the atmospheric water vapour profile on the surface energy budget during clear-sky winter conditions. The influence of the atmospheric circulation on the vertical water vapour distribution in the Arctic is investigated by use of the AO index. While very stable conditions with a weak exchange with lower latitudes are expected during the positive phase of the AO, a stronger meridional transport is related to the negative phase of the AO. The evaluation of 71 randomly selected clear-sky profiles shows differences in the amount and the vertical structure of each WVMR profile between the two phases. Higher WVMR values and layers with higher IWV are observed during the negative AO phase. Nonetheless, a high variability between dry and humid cases is seen during all phases of the AO due to synoptic events. Two main sources for water vapour in the Eastern Central Arctic are identified independent of the AO. These are cyclones on the one hand and the occurrence of a main wind direction from the seas north of Siberia namely Laptev, Kara and Barents Sea on the other hand. In summary, the thesis discusses different calibration methods for the derivation of WVMR profiles from Raman lidar measurements in its first part. In the second part, the thesis gives an overview over the vertical water vapour distribution in the Central Arctic winter and its complex relation to temperature profiles, radiation measurements at the surface and the atmospheric circulation.
142

Posouzení vlivu uzavíracích nátěrů a lakovaných povrchů na trvanlivost betonových výrobků / Assessing the impact of the closing of paint and lacquer surfaces on the durability of concrete products

Zubkova, Ekaterina January 2018 (has links)
This diploma thesis is focused on studying the influence of different types of surface treatments on vibropressed product. The main goal is to characterize surface treatments consisting of application of surface coatings that are hardened by infrared or ultraviolet radiation. Theoretical part gives specifications already known methods for surface finishing. Briefly describes selected types of prefabricated concrete parts and specificate the requirements for these products. It also describes used test methods. The experimental part was aimed at establishing the effectiveness of changing properties concrete products by adding coatings on their surface. This was achieved by testing the properties of concrete paving blocks with modified surfaces and testing of reference blocks that did not have any surface treatment followed by mutual comparison of the results.
143

Ověření tepelně-izolační vlastnosti termoreflexních fóliových izolací / Verification of thermal-insulation properties of the foil materials

Šot, Petr January 2014 (has links)
The master´s thesis deals with verification of thermal insulating property of thermoreflection foil insulations. The teoretical part of thesis focuses on the energy demand of buildings, the problems of heat transfer material, terms required for study of thermoreflection thermal insulation and experimental methods for determination of thermal insulating properties of insulators. In the next part the chapter is accompanied by an overview of the most common insulation materials which used in construction. The last part of teoretical part is devoted to the description of thermoreflect formation and analysis of the spread of thermal insulating layers of thermoreflection thermal insulation. The first part of thesis is devoted to the use of thermoreflection therm insulation in buildings. The second part of thesis is devoted to the design, assembly and calibration of the measuring device that uses a method of protected warm chamber. It is declared as a binding method of detection of the heat transfer performance of thermoreflection thermal insulation. The developed measuring device allows detection of endpoints in some direction of propagation of heat. Measurment of heat transfer coefficient devoted the third part of practical part. This part contains a description of the samples used for the measurement of the heat transfer coefficient. In the fourth chapter of the practical part are presented the results of the heat transfer coefficient measurments on selected samples of thermoreflection foil insulation. It is shown the characteristic of heat transfer coefficient of individual samples, the dependence of the heat transfer coefficient on the position of the sample in the measuring device and the recommendation of an appropriate use of sample in the works for the climatic conditions of the Czech republic. The work concludes the chapter of comparing and evaluating of all samples with practical recommendations.

Page generated in 0.0226 seconds