• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • Tagged with
  • 31
  • 31
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribución a la implementación de Ciclos Rankine como sistema de aprovechamiento de energía térmica residual en MCIA

Sánchez Serrano, Jaime 31 March 2015 (has links)
La recuperaci´on de la potencia t´ermica residual existente en los motores de automoci´on se muestra como una v´ıa para el aumento de su eficiencia. Muchos estudios en la literatura han mostrado un potencial de recuperaci´on de hasta el 15 %. En la mayor parte de los casos, las investigaciones est´an basadas en estudios te´oricos, o bien, basadas en resultados experimentales de prototipos alimentados con generadores de gases que simulan los gases de escape de un motor en condiciones estacionarias. El objetivo principal de este trabajo, es la evaluaci´on te´orico-experimental del potencial de recuperaci´on de un sistema de aprovechamiento energ´ıa t´ermica residual mediante un ciclo Rankine, aplicado en motores de combusti´on interna alternativos y en condiciones estacionarias de funcionamiento. La finalidad de este sistema ser´a conseguir una mejora en la eficiencia de los motores de automoci´on, y la consiguiente reducci´on en consumo de combustible y en emisiones de contaminantes. La metodolog´ıa que se ha seguido para realizar el trabajo, combina actividades experimentales en banco de ensayo de motor, con el desarrollo de estudio te´oricos basados en modelos 0-D para la evaluaci´on te´orica de diferentes configuraciones de ciclo y fluidos de trabajo. La interacci´on entre ambas actividades ha permitido alcanzar los objetivos planteados. Respecto los trabajos te´oricos, se ha realizado una metodolog´ıa que permite una evaluaci´on sencilla y ordenada de las prestaciones del ciclo Rankine para diferentes fluidos de trabajo, condiciones de ciclo, y secuencias de fuentes residuales a utilizar, considerando ciclos de aprovechamiento de naturaleza ideal. Posteriormente, se ha realizado un estudio de viabilidad t´ecnica de ciclos Rankine para diferentes motores, con el fin de obtener informaci´on sobre la tipolog´ıa de los elementos constructivos a utilizar (expansores e intercambiadores), criterios de dise˜no, y prestaciones finales del ciclo de recuperaci´on esperables en funci´on del fluido de trabajo utilizado. La finalidad de este trabajo ha sido doble. Por un lado, debe servir como contribuci´on sobre estudios te´oricos de ciclos Rankine como sistemas de recuperaci´on, y por otro lado, como estudios preliminares para la instalaci´on experimental de un ciclo de recuperaci´on en un banco de ensayo, que ha permitido comparar las prestaciones reales con las obtenidas te´oricamente para la realizaci´on de mejoras. En la realizaci´on del trabajo experimental del ciclo Rankine, se ha dise˜nado y construido una instalaci´on experimental acoplada a un motor de gasolina. Los estudios experimentales, en los cuales se ha basado la evaluaci´on de la potencialidad del ciclo, se han basado en estudios de puntos de funcionamiento m´as frecuentes en este tipo de motores, considerando condiciones estacionarias. El objetivo de los trabajos experimentales ha sido estudiar los efectos de la implementaci´on de sistemas de recuperaci´on de energ´ıa t´ermica residual en el veh´ıculo, y en consecuencia, cuantificar el efecto del mismo en la eficiencia global del motor. / Sánchez Serrano, J. (2015). Contribución a la implementación de Ciclos Rankine como sistema de aprovechamiento de energía térmica residual en MCIA [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48564 / TESIS
2

A CFD STUDY OF CAVITATION IN REAL SIZE DIESEL INJECTORS

Patouna, Stavroula 17 February 2012 (has links)
In Diesel engines, the internal flow characteristics in the fuel injection nozzles, such as the turbulence level and distribution, the cavitation pattern and the velocity profile affect significantly the air-fuel mixture in the spray and subsequently the combustion process. Since the possibility to observe experimentally and measure the flow inside real size Diesel injectors is very limited, Computational Fluid Dynamics (CFD) calculations are generally used to obtain the relevant information. The work presented within this thesis is focused on the study of cavitation in real size automotive injectors by using a commercial CFD code. It is divided in three major phases, each corresponding to a different complementary objective. The first objective of the current work is to assess the ability of the cavitation model included in the CFD code to predict cavitating flow conditions. For this, the model is validated for an injector-like study case defined in the literature, and for which experimental data is available in different operating conditions, before and after the start of cavitation. Preliminary studies are performed to analyze the effects on the solution obtained of various numerical parameters of the cavitation model itself and of the solver, and to determine the adequate setup of the model. It may be concluded that overall the cavitation model is able to predict the onset and development of cavitation accurately. Indeed, there is satisfactory agreement between the experimental data of injection rate and choked flow conditions and the corresponding numerical solution.This study serves as the basis for the physical and numerical understanding of the problem. Next, using the model configuration obtained from the previous study, unsteady flow calculations are performed for real-size single and multi-hole sac type Diesel injectors, each one with two types of nozzles, tapered and cylindrical. The objective is to validate the model with real automotive cases and to ununderstand in what way some physical factors, such as geometry, operating conditions and needle position affect the inception of cavitation and its development in the nozzle holes. These calculations are made at full needle lift and for various values of injection pressure and back-pressure. The results obtained for injection rate, momentum flux and effective injection velocity at the exit of the nozzles are compared with available CMT-Motores Térmicos in-house experimental data. Also, the cavitation pattern inside the nozzle and its effect on the internal nozzle flow is analyzed. The model predicts with reasonable accuracy the effects of geometry and operating conditions. / Patouna, S. (2012). A CFD STUDY OF CAVITATION IN REAL SIZE DIESEL INJECTORS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14723 / Palancia
3

Estudio CFD de la resonancia en la cámara de combustión de Motores Diesel HDI

Donayre Ramírez, José Christian 07 January 2013 (has links)
El proceso de combustión es una de las fuentes principales de ruido de los motores Diesel, debido al incremento brusco de la presión que provoca el autoencendido en la cámara de combustión. Este rápido incremento origina un proceso de oscilación de los gases quemados en la cámara de combustión, conocido como fenómeno de resonancia, que se transmite a través del bloque, empeorando la calidad acústica del motor. Existen numerosos procedimientos experimentales, orientados al estudio del ruido provocado por el proceso de combustión de motores Diesel. Sin embargo, su aplicación en el diseño de cámaras de combustión no es idónea, por el coste que supone realizar los prototipos, el montaje y las medidas. Frente a los métodos experimentales, los métodos teóricos son más rápidos y tienen la capacidad de obtener gran cantidad de información espacial y temporal del fenómeno de resonancia. Se emplean principalmente el método de la teoría modal y el método CFD (Computational Fluid Dynamics). El primero permite estimar el comportamiento de los modos de oscilación, pero su uso se limita a cámaras de combustión de geometría cilíndrica. En cuanto al método CFD, puede utilizarse en cámaras de cualquier geometría, sin embargo la predicción de los efectos locales de presión, estimados por los modelos de combustión, no es coherentes con los niveles de oscilación del autoencendido. La presente tesis contribuye al desarrollo de una metodología que mejore los métodos teórico-numéricos, superando sus limitaciones geométricas y predictivas. Esta metodología consiste en simular las condiciones termodinámicas del autoencendido, a partir de focos de presión y temperatura en instante temporal, sin considerar el proceso reactivo de la mezcla aire-combustible. En la primera parte de esta tesis, con la finalidad de simplificar las simulaciones se asume que el proceso de combustión se produce en el punto muerto superior, sin considerar el movimiento del pistón. En base a esta suposición, se estu / Donayre Ramírez, JC. (2012). Estudio CFD de la resonancia en la cámara de combustión de Motores Diesel HDI [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18292 / Palancia
4

Experiments and Modelling of Automotive Turbochargers under Unsteady Conditions

García-Cuevas González, Luis Miguel 30 March 2015 (has links)
The current global scenario, in which an ever increasing population with an ever growing transportation needs is coupled with a reduction in the fossil fuel production and increasing human-made pollution derived problems, leads automotive engine manufacturers to constant struggles for fuel consumption and emission reductions while keeping engine performance. One-dimensional simulation codes have become a key tool towards these objectives, but require continued accuracy refinements. Phenomena that were previously thought of a limited importance and could be extremely easily modelled now require the development of new methods to be accounted for. Among these phenomena are the turbocharger mechanical losses and the turbine behaviour under highly pulsating boundary conditions. This work is focused on the improvement of current one-dimensional models, for both mechanical losses prediction and high frequency pulsating flow turbine performance. After reviewing the state-of-the-art in experimental measurement and fast simulation of automotive turbochargers, this work presents first a experimental study of several turbochargers working under both steady-state and unsteady operating conditions, focusing on the general performance of the turbine and the losses in the power transmission between it and the compressor, even including internal pressure measurements in one of the tested units. All the measurements are corrected due to heat transfer, getting the purely adiabatic behaviour. Furthermore, a CFD simulation campaign of a radial turbine has been performed, thus obtaining a detailed description of its internal behaviour under highly pulsating flow. In the light of both the experimental and CFD-simulated results, a quasi-steady mechanical losses and a quasi-bidimensional turbine model have been developed. Both models have been validated using all the experimental and simulated data, proving a prediction accuracy improvements from the results of previous methods. The mechanical losses model offers a clear advantage over the usual practice of using a constant mechanical efficiency value for correcting the manufacturer’s turbocharger map, whereas the turbine model has demonstrated potential for turbine map extrapolation and has improved the instantaneous results over classic onedimensional turbine volute models for frequencies higher than 1000 Hz. Both models have been developed trying to keep a reduced computational cost, ensuring to exploit the specific characteristics of the processors where they are going to be run. / García-Cuevas González, LM. (2014). Experiments and Modelling of Automotive Turbochargers under Unsteady Conditions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48458 / TESIS
5

Recuperation of the exhaust gases energy using a Brayton cycle machine

Kleut, Petar 16 January 2017 (has links)
Lately, car manufacturers have been put to a big challenge to reduce the CO2 emission of their entire fleets. Norms of pollutant emissions limit the ways to achieve the desired CO2 emission goals, as some of the solutions that would lead to lower CO2 emission also lead to higher pollutant emission. Waste Heat Recovery (WHR) could be a good solution to lower the CO2 emission of the Internal Combustion Engine (ICE) without increasing the pollutant emission. In the present thesis different WHR strategies are analysed and the results suggested it would be interesting to further study the Brayton cycle machine. Air Brayton Cycle (ABC) represents a way to recover a part of the heat energy of the ICE exhaust gases and transform it into mechanical energy. Recovered mechanical energy would then be returned to the crankshaft of the ICE, thereby reducing the amount of energy that has to be liberated by combustion of fuel which lowers the fuel consumption and CO2 emission. The study of ABC started with an analysis of the ideal cycle in order to obtain the theoretical maximum of the system. The study continued with an analysis of the semi ideal cycle where all losses are taken into account only by two efficiency coefficients. This analysis showed that for the diesel engine efficiency of the ABC is very low because of the low exhaust gas temperature. For the gasoline engine the cycle could be viable when the ICE is working under steady condition and higher load. These conditions could be fulfilled when the vehicle is driven on the highway. Detailed analysis was aimed at determining the cycle main losses. They were determined to be: pumping losses, losses caused by heat transfer and mechanical losses. Taking into account these main losses along with other direct and indirect losses it was concluded that the cycle is not viable for the types of the WHR machines that were considered in this study. In order for the cycle to be viable some other either existing or new machine type should be tested, that would lower the main losses and offer good isentropic and mechanical efficiency for desired conditions. / Últimamente los fabricantes de automóviles se han puesto el gran reto de reducir la emisión de CO2 en la totalidad de sus flotas. Las nuevas normativas para la reducción de las emisiones contaminantes limitan los medios para lograr los objetivos deseados en la emisión de CO2 porque algunas de las soluciones que llevan a la reducción en la emisión de CO2 también dan lugar a un incremento en la emisión de otros contaminantes. La recuperación de calor residual (WHR) podría ser una buena solución para reducir las emisiones de CO2 del motor de combustión interna (ICE) sin poner en peligro la emisión de contaminantes. En la presente Tesis se analizaron diferentes estrategias de WHR y se concluyó que sería interesante estudiar más a fondo la máquina de ciclo Brayton. El Ciclo Brayton de Aire (ABC) permite recuperar una parte del calor de los gases de escape del ICE y transformar este calor en energía mecánica. La energía mecánica recuperada se devuelve al cigüeñal del ICE, reduciendo de ese modo la cantidad de energía que tiene que ser liberada por la combustión del combustible, lo cual permite reducir el consumo de combustible y las emisiones de CO2. En esta Tesis se estudia el ABC mediante un análisis del ciclo ideal con el fin de obtener el máximo teórico del sistema. El modelo se mejora con un análisis del ciclo semi-ideal donde se tienen en cuenta todas las pérdidas mediante el uso de dos coeficientes generales. Este análisis muestra que para el motor diesel la eficiencia del ciclo ABC es muy baja debido a la baja temperatura del gas de escape. Para el motor de gasolina el ciclo podría ser viable cuando el ICE está trabajando bajo condiciones estacionarias y una carga mayor. Estas condiciones se podrían cumplir cuando el vehículo está circulando en autopista. El análisis detallado de este ciclo tiene como objetivo determinar las pérdidas principales de ciclo. Las pérdidas principales se identificaron como: las pérdidas de bombeo, las pérdidas causadas por la transferencia de calor y las pérdidas mecánicas. Teniendo en cuenta estas pérdidas principales junto con otras pérdidas directas e indirectas, se concluyó que el ciclo no es viable para los tipos de máquinas WHR que fueron considerados en este estudio. Para que el ciclo sea viable se tiene que buscar alguna otra máquina existente o un nuevo tipo de máquina que reduzca las principales pérdidas y ofrezca un buen rendimiento isentrópico y mecánico para las condiciones deseadas. / Últimament els fabricants d'automòbils s'han posat el gran repte de reduir l'emissió de CO2 de la totalitat de les seues flotes. Les noves normatives de reducció de les emissions contaminants limiten els mitjans per assolir els objectius desitjats d'emissió de CO2 perquè algunes de les solucions que porten a la reducció en l'emissió de CO2 també donen lloc a un increment a l'emissió de altres contaminants. La recuperació de calor residual (WHR) podria ser una bona solució per reduir les emissions de CO2 del motor de combustió interna (ICE) sense posar en perill l'emissió de contaminants. En la present Tesi s'han analitzat diferents estratègies WHR i es va concloure que seria interessant estudiar més a fons el cicle Brayton. El Cicle Brayton d'Aire (ABC) representa una manera de recuperar una part de la calor dels gasos d'escapament de l'ICE i transformar calor a l'energia mecànica. L'energia mecànica recuperada es retorna al cigonyal de l'ICE reduint d'aquesta manera la quantitat d'energia que ha de ser alliberada per la combustió del combustible permitint la reducció del consum de combustible i les emissions de CO2. En aquesta Tesi s'ha començat estudiant un ABC amb una anàlisi del cicle ideal per tal d'obtenir el màxim teòric del sistema. Este model es millora amb una anàlisi del cicle semiideal on es tenen en compte totes les pèrdues amb tan sols dos coeficients d'eficiència. Aquesta anàlisi va mostrar que per al motor dièsel l'eficiència del cicle ABC és molt baixa a causa de la baixa temperatura del gas d'escapament. Per al motor de gasolina el cicle podria ser viable quan l'ICE està treballant sota condicions estacionàries i una càrrega més gran. Aquestes condicions es podrien complir quan el vehicle està circulant en autopista. L'anàlisi detallada del cicle va tenir com a objectiu determinar les pèrdues principals de cicle. Les pèrdues principals es van identificar com: les pèrdues de bombament, les pèrdues causades per la transferència de calor i les pèrdues mecàniques. Tenint en compte aquestes pèrdues principals juntament amb altres pèrdues directes i indirectes, es va concloure que el cicle no és viable per als tipus de màquines WHR que van ser considerats en aquest estudi. Perquè el cicle puga ser viable s'ha de buscar alguna altra màquina existent o un nou tipus de màquina que puga reduir les principals pèrdues i puga oferir un bon rendiment isentròpic i mecànic per a les condicions desitjades. / Kleut, P. (2016). Recuperation of the exhaust gases energy using a Brayton cycle machine [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/76807 / TESIS
6

Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles

Royo Pascual, Lucía 29 June 2017 (has links)
Regulations for ICE-based transportation in the EU seek carbon dioxide emissions lower than 95 g CO2/km by 2020. In order to fulfill these limits, improvements in vehicle fuel consumption have to be achieved. One of the main losses of ICEs happens in the exhaust line. Internal combustion engines transform chemical energy into mechanical energy through combustion; however, only about 15-32% of this energy is effectively used to produce work, while most of the fuel energy is wasted through exhaust gases and coolant. Therefore, these sources can be exploited to improve the overall efficiency of the engine. Between these sources, exhaust gases show the largest potential of Waste Heat Recovery (WHR) due to its high level of exergy. Regarding WHR technologies, Rankine cycles are considered as the most promising candidates for improving Internal Combustion Engines. However, the implementation of this technology in modern passenger cars requires additional features to achieve a compact integration and controllability in the engine. While industrial applications typically operates in steady state operating points, there is a huge challenge taking into account its impact in the engine during typical daily driving profiles. This thesis contributes to the knowledge and characterization of an Organic Rankine Cycle coupled with an Internal Combustion Engine using ethanol as working fluid and a swash-plate expander as expansion machine. The main objective of this research work is to obtain and quantify the potential of Organic Rankine Cycles for the use of residual energy in automotive engines. To do this, an experimental ORC test bench was designed and built at CMT (Polytechnic University of Valencia), which can be coupled to different types of automotive combustion engines. Using these results, an estimation of the main variables of the cycle was obtained both in stationary and transient operating points. A potential of increasing ICE mechanical efficiency up to 3.7% could be reached at points of high load installing an ORC in a conventional turbocharged gasoline engine. Regarding transient conditions, a slightly simple and robust control based on adaptive PIDs, allows the control of the ORC in realistic driving profiles. High loads and hot conditions should be the starting ideal conditions to test and validate the control of the ORC in order to achieve high exhaust temperatures that justify the feasibility of the system. In order to deepen in the viability and characteristics of this particular application, some theoretical studies were done. A 1D model was developed using LMS Imagine.Lab Amesim platform. A potential improvement of 2.5% in fuel conversion efficiency was obtained at the high operating points as a direct consequence of the 23.5 g/kWh reduction in bsfc. To conclude, a thermo-economic study was developed taking into account the main elements of the installation costs and a minimum Specific Investment Cost value of 2030 €/kW was obtained. Moreover, an exergetic study showed that a total amount of 3.75 kW, 36.5% of exergy destruction rate, could be lowered in the forthcoming years, taking account the maximum efficiencies considering technical restrictions of the cycle components. / Las normativas anticontaminantes para el transporte propulsado por motores de combustión interna alternativos en la Unión Europea muestran límites de emisión menores a 95 g CO2/km para el año 2020. Con el fin de cumplir estos límites, deberán ser realizadas mejoras en el consumo de combustible en los vehículos. Una de las principales pérdidas en los Motores de Combustión Interna Alternativos (MCIA) ocurre en la línea de escape. Los MCIA transforman la energía química en energía mecánica a través de la combustión; sin embargo, únicamente el 15-32% de esta energía es eficazmente usada para producir trabajo, mientras que la mayor parte es desperdiciada a través de los gases de escape y el agua de refrigeración del motor. Por ello, estas fuentes de energía pueden ser utilizadas para mejorar la eficiencia global del vehículo. De estas fuentes, los gases de escape muestran un potencial mayor de recuperación de energía residual debido a su mayor contenido exergético. De todos los tipos de Sistemas de Recuperación de Energía Residual, los Ciclos Rankine son considerados como los candidatos más prometedores para mejorar la eficiencia de los MCIA. Sin embargo, la implementación de esta tecnología en los vehículos de pasajeros modernos requiere nuevas características para conseguir una integración compacta y una buena controlabilidad del motor. Mientras que las aplicaciones industriales normalmente operan en puntos de operación estacionarios, en el caso de los vehículos con MCIA existen importantes retos teniendo en cuenta su impacto en el modo de conducción cotidianos. Esta Tesis contribuye al conocimiento y caracterización de un Ciclo Rankine Orgánico acoplado con un Motor de Combustión Interna Alternativo utilizando etanol como fluido de trabajo y un expansor tipo Swash-plate como máquina expansora. El principal objetivo de este trabajo de investigación es obtener y cuantificar el potencial de los Ciclos Rankine Orgánicos (ORC) para la recuperación de la energía residual en motores de automoción. Para ello, una instalación experimental con un Ciclo Rankine Orgánico fue diseñada y construida en el Instituto Universitario "CMT - Motores Térmicos" (Universidad Politécnica de Valencia), que puede ser acoplada a diferentes tipos de motores de combustión interna alternativos. Usando esta instalación, una estimación de las principales variables del ciclo fue obtenida tanto en puntos estacionarios como en transitorios. Un potencial de mejora en torno a un 3.7 % puede ser alcanzada en puntos de alta carga instalando un ORC en un motor gasolina turboalimentado. Respecto a las condiciones transitorias, un control sencillo y robusto basado en PIDs adaptativos permite el control del ORC en perfiles de conducción reales. Las condiciones ideales para testear y validar el control del ORC son alta carga en el motor comenzando con el motor en caliente para conseguir altas temperaturas en el escape que justifiquen la viabilidad de estos ciclos. Para tratar de profundizar en la viabilidad y características de esta aplicación particular, diversos estudios teóricos fueron realizados. Un modelo 1D fue desarrollado usando el software LMS Imagine.Lab Amesim. Un potencial de mejora en torno a un 2.5% en el rendimiento efectivo del motor fue obtenido en condiciones transitorias en los puntos de alta carga como una consecuencia directa de la reducción de 23.5 g/kWh del consumo específico. Para concluir, un estudio termo-económico fue desarrollado teniendo en cuenta los costes de los principales elementos de la instalación y un valor mínimo de 2030 €/kW fue obtenido en el parámetro de Coste Específico de inversión. Además, el estudio exergético muestra que un total de 3.75 kW, 36.5 % de la tasa de destrucción total de exergía, podría ser reducida en los años futuros, teniendo en cuenta las máximas eficiencias considerando restricciones técnicas en los componentes del ciclo. / Les normatives anticontaminants per al transport propulsat per motors de combustió interna alternatius a la Unió Europea mostren límits d'emissió menors a 95 g·CO2/km per a l'any 2020. Per tal d'acomplir aquests límits, s'hauran de realitzar millores al consum de combustible dels vehicles. Una de les principals pèrdues als Motors de combustió interna alternatius (MCIA) ocorre a la línia d'escapament. Els MCIA transformen l'energia química en energia mecànica a través de la combustió; però, únicament el 15-32% d'aquesta energia és usada per produir treball, mentre que la major part és desaprofitada a través dels gasos d'escapament i l'aigua de refrigeració del motor. Per això, aquestes fonts d'energia poden ser utilitzades per millorar l'eficiència global del vehicle. Considerant aquestes dues fonts d'energia, els gasos d'escapament mostren un potencial major de recuperació d'energia residual debut al seu major contingut exergètic. De tots els tipus de Sistemes de Recuperació d'Energia Residual, els Cicles Rankine són considerats com els candidats més prometedors per millorar l'eficiència dels MCIA. No obstant, la implementació d'aquesta tecnologia en els vehicles de passatgers moderns requereix un desenvolupament addicional per aconseguir una integració compacta i una bona controlabilitat del motor. Mentre que les aplicacions industrials normalment operen en punts d'operació estacionaris, en el cas dels vehicles amb MCIA hi han importants reptes a solucionar tenint en compte el funcionament en condicions variables del motor i el seu impacte en la manera de conducció quotidiana del usuari. Aquesta Tesi contribueix al coneixement i caracterització d'un Cicle Rankine Orgànic (ORC) acoblat amb un motor de combustió interna alternatiu (MCIA) utilitzant etanol com a fluid de treball i un expansor tipus Swash-plate com a màquina expansora. El principal objectiu d'aquest treball de recerca és obtenir i quantificar el potencial dels ORCs per a la recuperació de l'energia residual en motors d'automoció. Per aconseguir-ho, una instal·lació experimental amb un ORC va ser dissenyada i construïda a l'Institut "CMT- Motores Térmicos" (Universitat Politècnica de València). Esta installació pot ser acoblada a diferents tipus de MCIAs. Mitjançant assajos experimentals en aquesta installació, una estimació de les principals variables del cicle va ser obtinguda tant en punts estacionaris com en punts transitoris. Un potencial de millora al voltant d'un 3.7% pot ser aconseguida en punts d'alta càrrega instal·lant un ORC acoblat a un motor gasolina turboalimentat. Pel que fa a les condicions transitòries, un control senzill i robust basat en PIDs adaptatius permet el control del ORC en perfils de conducció reals. Les condicions ideals per a testejar i validar el control de l'ORC són alta càrrega al motor començant amb el motor en calent per aconseguir altes temperatures d'escapament que justifiquen la viabilitat d'aquests cicles. Per tractar d'aprofundir en la viabilitat i característiques d'aquesta aplicació particular, diversos estudis teòrics van ser realitzats. Un model 1D va ser desenvolupat usant el programari LMS Imagine.Lab Amesim. Un potencial de millora al voltant d'un 2.5% en el rendiment efectiu del motor va ser obtingut en condicions transitòries en els punts d'alta càrrega com una conseqüència directa de la reducció de 23.5 g/kWh al consum específic. Per concloure, un estudi termo-econòmic va ser desenvolupat tenint en compte els costos dels principals elements de la installació i un valor mínim de 2030 €/kW va ser obtingut en el paràmetre del Cost Específic d'Inversió. A més, l'estudi exergètic mostra que un total de 3.75 kW, 36.5% de la taxa de destrucció total d'exergia, podria ser recuperat en un pròxim, considerant restriccions tècniques en els components del cicle i tenint en compte les màximes eficiències que es poden aconseguir. / Royo Pascual, L. (2017). Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84013 / TESIS
7

Contribution to the understanding of filtration and pressure drop phenomena in wall-flow DPFs

Angiolini, Emanuele 01 September 2017 (has links)
From the last decades of the 20th century, internal combustion engines have undergone a continuous improvement process aimed to the increase of their efficiency and decrease of the pollutants emissions. The reduction of the availability of fossil fuel and the increase of human-made pollution observed in the last decades is leading worldwide to more stringent emission standards that make the engine manufacturers to constantly look for fuel consumption and emission reductions while keeping engine performance. To comply with current and incoming emission regulations, the exhaust line of internal combustion engines has been gradually complicated by the presence of aftertreatment systems. Among them, the particulate filter is the device in charge of abating the emission of soot in the atmosphere. Concerning compression ignition engines, diesel particulate filters (DPF) were first commercially utilized in significant numbers in passenger car and heavy-duty engines since the beginning of the 21st century. Euro 6 emission standards limits the emitted particulate matter from direct injection engines, thus extending the use of particulate filters also to direct injection gasoline engines. A deep knowledge of the phenomena happening inside the DPF is required for the correct understanding of the behaviour of this system and its interaction with the engine. The precise knowledge of the filtration and pressure drop processes is mandatory for the design of the particulate filter and is also essential to wisely think up and analyse solutions aimed to limit the negative impact of the filter on the fuel consumption maintaining its capability of retaining soot particles. Thus, the present work pretends to provide a contribution to the understanding of these phenomena in wall-flow DPFs. The problem has been faced on a computational and experimental basis. A notable part of the work was dedicated to the development and validation of a one-dimensional DPF filtration model to be coupled with the existing pressure drop model. The model was implemented in OpenWAM¿, the open-source gas dynamics software for internal combustion engines and components computation developed at CMT - Motores Térmicos. The developed computational tool was applied to the assessment of the aftertreatment (DOC&DPF) volume downsizing potential in post- and pre-turbo aftertreatment configuration. The study is completed with experimental analysis to support theoretical insights discussing how the soot deposition profile and the particulate layer properties impact on the DPF pressure drop. / Desde las últimas décadas del siglo XX, se ha producido un proceso de mejora continua de los motores de combustión interna alternativos con el fin de aumentar su eficiencia y reducir las emisiones contaminantes. La reducción de la disponibilidad de combustibles fósiles y el incremento de la polución de origen antropogénico observados en las ultimas décadas ha provocado el progresivo endurecimiento de las normativas anticontaminación a nivel mundial obligando a los fabricantes de motores a buscar la reducción continua del consumo de combustible y emisiones, manteniendo las prestaciones del motor. El cumplimiento de las actuales y futuras normativas anticontaminación requiere de la instalación de diversos sistemas de postratamiento de gases en la línea de escape de los motores de combustión interna alternativos, aumentando su complejidad. Entre estos sistemas, el filtro de partículas es el equipo encargado de la reducción de la emisión de hollín a la atmósfera. Con respeto a los motores de encendido por compresión, los filtros de partículas diésel se implementaron por primera vez de forma masiva en vehículos de pasajeros y vehículos pesados a principio del siglo XXI. La normativa anti contaminación Euro 6 limita las emisiones de partículas de los motores de inyección directa, extendiendo el uso de filtros de partículas a los motores de inyección directa de gasolina. Es necesario tener un conocimiento profundo de los fenómenos que tienen lugar en el DPF para comprender el comportamiento de este sistema y su interacción con el motor. El conocimiento de los procesos de filtrado y perdida de presión es vital para el diseño del filtro de partículas y resulta esencial para encontrar y analizar soluciones que ayuden a limitar el impacto negativo del DPF sobre el consumo de combustible sin perder la capacidad de retener partículas de hollín. En este contexto, este trabajo pretende aportar una contribucción a la comprensión de estos fenómenos en filtros de partículas de flujo de pared. Esta tarea se ha planteado desde un punto de vista computacional y experimental. Parte importante de este trabajo ha consistido en el desarrollo y validación de un modelo de filtrado unidimensional de DPF que se ha acoplado con el modelo de caida de presión ya existente. El modelo se ha implementado en OpenWAM¿, el software de libre acceso para el cálculo fluidodinámico de motores de combustión interna y sus componentes desarrollado en CMT - Motores Térmicos. La herramienta computacional desarrollada se ha aplicado a la evaluación del potencial de reducción de volumen de sistemas de postratamiento (DOC&DPF) en configuraciones post- y pre-turbo. Este estudio se ha completado con un análisis experimental para dar respaldo a los conceptos teóricos empleados discutiendo como el perfil de deposición del hollín y las propiedades de la capa de partículas afectan a la perdida de presión del DPF. / Des les últimes dècades del segle XX, s'ha produït un procés de millora contínua dels motors de combustió interna alternatius amb l'objectiu d'augmentar la seua eficiència i reduir les emissions contaminants. La reducció de la disponibilitat de combustibles fòssils i l'increment de la polució d'origen antropòlogic observats en les últimes dècades ha provocat que les normatives anticontaminació s'han fet més rígides a nivell mundial, obligant als fabricants de motors a buscar la reducció contínua del consum de combustibles i emissions, mantenint les prestacions dels motors. El cumpliment de les normes anticontaminació actuals i futures, requereixen de l'instalació de diversos sistemes de post-tractament de gasos a l'eixida dels motors de combustió interna alternatius, llavors augmentant la complexitat. Entre aquestos sistemes, el filtre de partícules es l'equip encarregat de la reducció de les partícules de sutge a l'atmosfera. Respecte als motors d'encès per compressió, els filtres de partícules van instalar-se de manera massiva als vehicles de passatgers i vehicles pesats al principi del segle XXI. La normativa anti contaminació Euro 6 limita les emissions de partícules dels motors d'inyecció directa, estenent l'ús del filtre de partícules als motors d'injecció directa de gasolina. És necessari tindre un coneixement dels fenòmens que tenen lloc al DPF per a comprendre el comportament del sistema i la seua interacció amb el motor. El coneixement dels processos de filtrat i la pèrdua de pressió és vital per al diseny del filtre de partícules i resulta essencial per a trobar i analitzar les solucions que ajuden a limitar l'impacte negatiu del DPF sobre el consum de combustible sense perdre la capacitat de retenir partícules de sutge. En aquest context, el projecte pretén aportar una contribució a la comprensió d'aquestos fenòmens en els filtres de partícules de flux de paret. Aquesta feina s'ha plantejat des d'un punt de vista computacional i experimental. Part important d'aquest treball ha consistit en el desenvolupament i validació d'un model de filtrat unidimensional de DPF que s'ha acoplat a un model de pèrdua de pressió existent. El model s'ha implementat en OpenWAM¿, el software de lliure accés per al cálcul fluidodinámic de motors de combustió interna i els seus components desenvolupats al CMT - Motores Térmicos. La ferramenta computacional desenvolupada s'ha aplicat a la evaluació del potencial de reducció del volum de sistemes de post tractament (DOC&DPF) en les configuracions post- i pre-turbo. Aquest estudi s'ha completat amb una anàlisi experimental per a donar suport als concepts teòrics emprats discutint com el perfil de la disposició de sutge i les propietats de la capa de partícules que afecten a la pèrdua de pressió del DPF. / Angiolini, E. (2017). Contribution to the understanding of filtration and pressure drop phenomena in wall-flow DPFs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86157 / TESIS
8

Study of the flow field through the wall of a Diesel particulate filter using Lattice Boltzmann Methods

García Galache, José Pedro 03 November 2017 (has links)
Contamination is becoming an important problem in great metropolitan areas. A large portion of the contaminants is emitted by the vehicle fleet. At European level, as well as in other economical areas, the regulation is becoming more and more restrictive. Euro regulations are the best example of this tendency. Specially important are the emissions of nitrogen oxide (NOx) and Particle Matter (PM). Two different strategies exist to reduce the emission of pollutants. One of them is trying to avoid their creation. Modifying the combustion process by means of different fuel injection laws or controlling the air regeneration are the typical methods. The second set of strategies is focused on the contaminant elimination. The NOx are reduced by means of catalysis and/or reducing atmosphere, usually created by injection of urea. The particle matter is eliminated using filters. This thesis is focused in this matter. Most of the strategies to reduce the emission of contaminants penalise fuel consumption. The particle filter is not an exception. Its installation, located in the exhaust duct, restricts the pass of the air. It increases the pressure along the whole exhaust line before the filter reducing the performance. Optimising the filter is then an important task. The efficiency of the filter has to be good enough to obey the contaminant normative. At the same time the pressure drop has to be as low as possible to optimise fuel consumption and performance. The objective of the thesis is to find the relation between the micro-structure and the macroscopic properties. With this knowledge the optimisation of the micro-structure is possible. The micro-structure of the filter mimics acicular mullite. It is created by procedural generation using random parameters. The relation between micro-structure and the macroscopic properties such as porosity and permeability are studied in detail. The flow field is solved using LabMoTer, a software developed during this thesis. The formulation is based on Lattice Botlzmann Methods, a new approach to simulate fluid dynamics. In addition, Walberla framework is used to solve the flow field too. This tool has been developed by Friedrich Alexander University of Erlangen Nürnberg. The second part of the thesis is focused on the particles immersed into the fluid. The properties of the particles are given as a function of the aerodynamic diameter. This is enough for macroscopic approximations. However, the discretization of the porous media has the same order of magnitude than the particle size. Consequently realistic geometry is necessary. Diesel particles are aggregates of spheres. A simulation tool is developed to create these aggregated using ballistic collision. The results are analysed in detail. The second step is to characterise their aerodynamic properties. Due to the small size of the particles, with the same order of magnitude than the separation between molecules of air, the fluid can not be approximated as a continuous medium. A new approach is needed. Direct Simulation Monte Carlo is the appropriate tool. A solver based on this formulation is developed. Unfortunately complex geometries could not be implemented on time. The thesis has been fruitful in several aspects. A new model based on procedural generation has been developed to create a micro-structure which mimics acicular mullite. A new CFD solver based on Lattice Boltzmann Methods, LabMoTer, has been implemented and validated. At the same time it is proposed a technique to optimized setup. Ballistic agglomeration process is studied in detail thanks to a new simulator developed ad hoc for this task. The results are studied in detail to find correlation between properties and the evolution in time. Uncertainty Quantification is used to include the Uncertainty in the models. A new Direct Simulation Monte Carlo solver has been developed and validated to calculate rarefied flow. / La contaminación se está volviendo un gran problema para las grandes áreas metropolitanas, en gran parte debido al tráfico. A nivel europeo, al igual que en otras áreas, la regulación es cada vez más restrictiva. Una buena prueba de ello es la normativa Euro de la Unión Europea. Especialmente importantes son las emisiones de óxidos de nitrógeno (NOx) y partículas (PM). La reducción de contaminantes se puede abordar desde dos estrategias distintas. La primera es la prevención. Modificar el proceso de combustión a través de las leyes de inyección o controlar la renovación de la carda son los métodos más comunes. La segunda estrategia es la eliminación. Se puede reducir los NOx mediante catálisis o atmósfera reductora y las partículas mediante la instalación de un filtro en el conducto de escape. La presente tesis se centra en el estudio de éste último. La mayoría de as estrategias para la reducción de emisiones penalizan el consumo. El filtro de partículas no es una excepción. Restringe el paso de aire. Como consecuencia la presión se incrementa a lo largo de toda la línea reduciendo las prestaciones del motor. La optimización del filtro es de vital importancia. Tiene que mantener su eficacia a la par que que se minimiza la caída de presión y con ella el consumo de combustible. El objetivo de la tesis es encontrar la relación entre la miscroestructura y las propiedades macroscópicas del filtro. Las conclusiones del estudio podrán utilizarse para optimizar la microestructura. La microestructura elegida imita los filtros de mulita acicular. Se genera por ordenador mediante generación procedimental utilizando parámetros aleatorios. Gracias a ello se puede estudiar la relación que existe entre la microestructura y las propiedades macroscópicas como la porosidad y la permeabilidad. El campo fluido se resuelve con LabMoTer, un software desarrollado en esta tesis. Está basado en Lattice Boltzmann, una nueva aproximación para simular fluidos. Además también se ha utilizado el framework Walberla desarrollado por la universidad Friedrich Alexander de Erlangen Nürnberg. La segunda parte de la tesis se centra en las partículas suspendidas en el fluido. Sus propiedades vienen dadas en función del diámetro aerodinámico. Es una buena aproximación desde un punto de vista macroscópico. Sin embargo éste no es el caso. El tamaño de la discretización requerida para calcular el medio poroso es similar al tamaño de las partículas. En consecuencia se necesita simular geometrías realistas. Las partículas Diesel son agregados de esferas. El proceso de aglomeración se ha simulado mediante colisión balística. Los resultados se han analizado con detalle. El segundo paso es la caracterización aerodinámica de los aglomerados. Debido a que el tamaño de las partículas precursoras es similar a la distancia entre moléculas el fluido no puede ser considerado un medio continuo. Se necesita una nueva aproximación. La herramienta apropiada es la Simulación Directa Monte Carlo (DSMC). Por ello se ha desarrollado un software basado en esta formulación. Desafortunadamente no ha habido tiempo suficiente como para implementar condiciones de contorno sobre geometrías complejas. La tesis ha sido fructífera en múltiples aspectos. Se ha desarrollado un modelo basado en generación procedimental capaz de crear una microestructura que aproxime mulita acicular. Se ha implementado y validado un nuevo solver CFD, LabMoTer. Además se ha planteado una técnica que optimiza la preparación del cálculo. El proceso de aglomeración se ha estudiado en detalle gracias a un nuevo simulador desarrollado ad hoc para esta tarea. Mediante el análisis estadístico de los resultados se han planteado modelos que reproducen la población de partículas y su evolución con el tiempo. Técnicas de Cuantificación de Incertidumbre se han empleado para modelar la dispersión de datos. Por último, un simulador basado / La contaminació s'està tornant un gran problema per a les grans àrees metropolitanes, en gran part degut al tràfic. A nivell europeu, a l'igual que en atres àrees, la regulació és cada volta més restrictiva. Una bona prova d'això és la normativa Euro de l'Unió Europea. Especialment importants són les emissions d'òxits de nitrogen (NOX) i partícules (PM). La reducció de contaminants se pot abordar des de dos estratègies distintes. La primera és la prevenció. Modificar el procés de combustió a través de les lleis d'inyecció o controlar la renovació de la càrrega són els mètodos més comuns. La segona estratègia és l'eliminació. Se pot reduir els NOX mediant catàlisis o atmòsfera reductora i les partícules mediant l'instalació d'un filtre en el vas d'escap. La present tesis se centra en l'estudi d'este últim. La majoria de les estratègies per a la reducció d'emissions penalisen el consum. El filtre de partícules no és una excepció. Restringix el pas d'aire. Com a conseqüència la pressió s'incrementa a lo llarc de tota la llínea reduint les prestacions del motor. L'optimisació del filtre és de vital importància. Ha de mantindre la seua eficàcia a la par que que es minimisa la caiguda de pressió i en ella el consum de combustible. L'objectiu de la tesis és trobar la relació entre la microescritura i les propietats macroscòpiques del filtre. Les conclusions de l'estudi podran utilisar-se per a optimisar la microestructura. La microestructura elegida imita els filtres de mulita acicular. Se genera per ordenador mediant generació procedimental utilisant paràmetros aleatoris. Gràcies ad això es pot estudiar la relació que existix entre la microestructura i les propietats macroscòpiques com la porositat i la permeabilitat. El camp fluït se resol en LabMoTer, un software desenrollat en esta tesis. Està basat en Lattice Boltzmann, una nova aproximació per a simular fluïts. Ademés també s'ha utilisat el framework Walberla, desentollat per l'Universitat Friedrich Alexander d'Erlangen Nürnberg. La segona part de la tesis se centra en les partícules suspeses en el fluït. Les seues propietats venen donades en funció del diàmetro aerodinàmic. És una bona aproximació des d'un punt de vista macroscòpic. No obstant este no és el cas. El tamany de la discretisació requerida per a calcular el mig porós és similar al tamany de les partícules. En conseqüència es necessita simular geometries realistes. Les partícules diésel són agregats d'esferes. El procés d'aglomeració s'ha simulat mediant colisió balística. Els resultats s'han analisat en detall. El segon pas és la caracterisació aerodinàmica dels aglomerats. Degut a que el tamany de les partícules precursores és similar a la distància entre molècules el fluït no pot ser considerat un mig continu. Se necessita una nova aproximació. La ferramenta apropiada és la Simulació Directa Monte Carlo (DSMC). Per això s'ha desenrollat un software basat en esta formulació. Malafortunadament no ha hagut temps suficient com per a implementar condicions de contorn sobre geometries complexes. La tesis ha segut fructífera en múltiples aspectes. S'ha desenrollat un model basat en generació procedimental capaç de crear una microestructura que aproxime mulita acicular. S'ha implementat i validat un nou solver CFD, LabMoTer. Ademés s'ha plantejat una tècnica que optimisa la preparació del càlcul. El procés d'aglomeració s'ha estudiat en detall gràcies a un nou simulador desenrollat ad hoc per ad esta tasca. Mediant l'anàlisis estadístic dels resultats s'han plantejat models que reproduixen la població de partícules i la seua evolució en el temps. Tècniques de Quantificació d'Incertea s'han empleat per a modelar la dispersió de senyes. Per últim, un simulador basat en DSMC s'ha desenrollat per a calcular fluïts rarificats. / García Galache, JP. (2017). Study of the flow field through the wall of a Diesel particulate filter using Lattice Boltzmann Methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90413 / TESIS
9

Simulation and modelling of the performance of radial turbochargers under unsteady flow

Soler Blanco, Pablo 27 April 2020 (has links)
[ES] Está fuera de toda duda que la industria del automóvil está viviendo una profunda transformación que, durante los últimos años, ha progresado a un ritmo acelerado. Debido a la crecientemente estricta regulación sobre emisiones contaminantes y la necesidad de satisfacer la siempre creciente demanda de movilidad sostenible, es necesario que los motores de combustión modernos reduzcan su consumo y emisiones manteniendo el rendimiento del motor. Para enfrentarse a este desafío, los ingenieros de investigación y desarrollo han redoblado sus esfuerzos a la hora de diseñar y mejorar los modelos unidimensionales, hasta el punto en el que el desarrollo de modelos 1D así como la simulación juegan un papel fundamental en los primeras etapas de diseño de nuevos motores y tecnologías. Al mismo tiempo, la tecnología de turbosobrealimentación se ha consolidado como una de las más efectivas a la hora de construir motores de alta eficiencia, lo que ha hecho evidente la importancia de comprender y modelar correctamente los efectos asociados a los turbogrupos. Particularmente, los fenómenos que ocurren en la turbina en condiciones de flujo fuertemente pulsante han demostrado ser complicadas de modelar y sin embargo decisivas, ya que los códigos de simulación son especialmente útiles cuando son diseñados para trabajar en condiciones realistas. Este trabajo se centra en mejorar los modelos unidimensionales actuales así como en desarrollar nuevas soluciones con el objetivo de contribuir a una mejor predicción del comportamiento de la turbina sometida a condiciones de flujo pulsante. Tanto los esfuerzos realizados en los trabajos experimentales como en los de modelado se han producido para poder proporcionar métodos que sean fáciles de adaptar a las diferentes configuraciones de turbogrupo usadas en la industria, por ello, pueden ser aplicados por ejemplo en turbinas de entrada simple y también en las cada vez más usadas turbinas de entrada doble. En cuanto al trabajo de modelado en la parte de turbina de entrada simple, el foco se ha puesto en presentar una versión mejorada de un código quasi-2D. La validación del modelo se basa en los datos experimentales que están disponibles de trabajos enteriores de la literatura, proporcionando una comparación completa entre los modelos quasi-2D y el clásico modelo 1D. La presión a la entrada y salida de la turbina se ha descompuesto en ondas que viajan hacia delante y hacia atrás por medio de la descomposición de presiones, empleando la componente reflejada y transmitida para verificar la bondad del modelo. El trabajo experimental de esta tesis se centra en desarrollar un nuevo método para ensayar cualquier turbina de doble entrada sometida a condiciones de flujo fuertemente pulsante. La configuración del banco de gas se ha diseñado para ser suficientemente flexible como para realizar pulsos en las dos ramas de entrada por separado, así como para usar condiciones de flujo caliente o condiciones ambiente con mínimos cambios en la instalación. La campaña experimental se usa para validar un modelo integrado unidimensional de turbina tipo twin scroll con especial foco en las componentes reflejada y transmitida para analizar el desempeño del modelo su capacidad de predicción de la acústica no lineal. Finalmente, después de desarrollar el trabajo experimental y de modelado, se presenta un procedimiento para caracterizar el sonido y ruido de la turbina por medio de matrices de transferencia acústica que es comparado con el código unidimensional completo. En este sentido, el método proporciona una herramienta útil y fácil de implementar para simulaciones en tiempo real que aplica de una manera práctica el trabajo de modelado expuesto a lo largo de esta tesis. / [CAT] Està fora de tot dubte que la indústria de l'automòbil està vivint una profunda transformació que, durant els últims anys, ha progressat a un ritme accelerat. A causa de la creixentment estricta regulació sobre emissions contaminants i la necessitat de satisfer la sempre creixent demanda de mobilitat sostenible, és necessari que els motors de combustió moderns reduïsquen el seu consum i emissions mantenint el rendiment del motor. Per a enfrontar-se a aquest desafiament, els enginyers de recerca i desenvolupament han redoblat els seus esforços a l'hora de dissenyar i millorar els models unidimensionals, fins al punt en el qual el desenvolupament de models 1D així com la simulació juguen un paper fonamental en les primeres etapes de disseny de nous motors i tecnologies. Al mateix temps, la tecnologia de turbosobrealimentación s'ha consolidat com una de les més efectives a l'hora de construir motors d'alta eficiència, la qual cosa ha fet evident la importància de comprendre i modelar correctament els efectes associats als turbogrupos. Particularment, els fenòmens que ocorren en la turbina en condicions de flux fortament polsant han demostrat ser complicades de modelar i no obstant això decisives, ja que els codis de simulació són especialment útils quan són dissenyats per a treballar en condicions realistes. Aquest treball se centra en millorar els models unidimensionals actuals així com a desenvolupar noves solucions amb l'objectiu de contribuir a una millor predicció del comportament de la turbina sotmesa a condicions de flux polsant. Tant els esforços realitzats en els treballs experimentals com en els de modelatge s'han produït per a poder proporcionar mètodes que siguen fàcils d'adaptar a les diferents configuracions de turbogrupo usades en l'indústria, per això, poden ser aplicats per exemple en turbines d'entrada simple i també en les cada vegada més usades turbines d'entrada doble. Pel que fa al treball de modelatge en la part de turbina d'entrada simple, el focus s'ha posat a presentar una versió millorada d'un codi quasi-2D. La validació del model es basa en les dades experimentals que estan disponibles de treballs anteriors de la literatura, proporcionant una comparació completa entre els models quasi-2D i el clàssic model 1D. La pressió a l'entrada i eixida de la turbina s'ha descompost en ones que viatgen cap avant i cap enrere per mitjà de la descomposició de pressions, emprant la component reflectida i transmesa per a verificar la bondat del model. El treball experimental d'aquesta tesi se centra en desenvolupar un nou mètode per a assajar qualsevol turbina de doble entrada sotmesa a condicions de flux fortament pulsante. La configuració del banc de gas s'ha dissenyat per a ser prou flexible com per a realitzar polsos en les dues branques d'entrada per separat, així com per a usar condicions de flux calent o condicions ambient amb mínims canvis en la instal·lació. La campanya experimental s'usa per a validar un model integrat unidimensional de turbina tipus twin-scroll amb especial focus en les components reflectida i transmesa per a analitzar l'acompliment del model la seua capacitat de predicció de l'acústica no lineal. Finalment, després de desenvolupar el treball experimental i de modelatge, es presenta un procediment per a caracteritzar el so i soroll de la turbina per mitjà de matrius de transferència acústica que és comparat amb el codi unidimensional complet. En aquest sentit, el mètode proporciona una eina útil i fàcil d'implementar per a simulacions en temps real que aplica d'una manera pràctica el treball de modelatge exposat al llarg d'aquesta tesi. / [EN] It is beyond all doubt that the automotive industry is living a deep transformation that, during the last years, has progressed at an ever accelerating rate. Due to the increasingly stringent pollutant emission regulations and the necessity to fulfil an ever growing demand for sustainable mobility, the modern internal combustion engines are required to strongly reduce the fuel consumption and emissions, while keeping the engine performance. In order to confront this challenge, engine research and development engineers have redoubled their efforts in designing and improving one-dimensional codes, to the point that the development of 1D models and simulation campaigns play a major role in the early steps of designing new engines or technologies. At the same time as the turbocharging technology has arisen as one of the most effective and extended solutions for building high efficient engines, the importance of understanding and modelling correctly the turbocharger effects has become evident. In particular, the phenomena that occurs in the turbine under highly pulsating conditions have proven to be challenging to model and yet decisive, as simulation codes are especially useful when they are designed to work under realistic conditions. This work focusses on the improvement of current one-dimensional models as well as in the development of new solutions with the aim of contributing to a better prediction of the turbine performance under pulsating conditions. Both experimental and modelling efforts have been made in order to provide methods that are easily adaptable to different turbocharger configurations used in the industry, so they can be applied for example in single turbines and also in the increasingly used two-scroll turbine technology. Regarding the modelling work of the single entry turbine part, the work has been focused in presenting an improved version of a quasi-2D code. The validation of the model is based on the experimental data available from previous works of the literature, providing a complete comparison between the quasi-2D and a classic 1D model. By means of a pressure decomposition, the pressure at the turbine inlet and outlet has been split into forward and backward travelling waves, employing the reflected and transmitted components to verify the goodness of the model. The experimental work of the thesis is centred in developing a new method in order to test any two-scroll turbine under highly pulsating flow conditions. The gas stand setup has been designed to be flexible enough to perform pulses in both inlet branches separately as well as to use hot or ambient conditions with minimal changes in the installation. The experimental campaign is used to fully validate an integrated 1D twin-scroll turbine model with special focus in the reflected and transmitted components for analysing the performance of the model and its non-linear acoustics prediction capabilities. Finally, after the experiment and modelling work is developed, a procedure to characterise the turbine sound and noise by means of acoustic transfer matrices is presented and tested against the fully one-dimensional code. In this sense, this method provides a useful and easily-implementable tool for fast and real time simulations that applies in a practical way the modelling work exposed along this thesis. / Soler Blanco, P. (2020). Simulation and modelling of the performance of radial turbochargers under unsteady flow [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/141609 / TESIS
10

Assessment of highly turbocharged oxygen production cycles coupled with power generation systems working under oxycombustion

Gutiérrez Castro, Fabio Alberto 23 November 2023 (has links)
[ES] Esta tesis evalúa ciclos de producción de oxígeno que usan membranas en tres contextos industriales, enfatizando en la producción de potencia operando bajo oxicombustión. La principal motivación es reducir las emisiones contaminantes sin afectar el desempeño del sistema. Se ha realizado un análisis termoeconómico de un ciclo de producción de oxígeno basado en membranas para evaluar la viabilidad de estas instalaciones en una planta de cerámica. El ciclo se impulsa por gases reciclados de la planta y usa turbogrupos e intercambiadores de calor para comprimir y calentar el aire para extraer su oxígeno. Dos configuraciones han sido estudiadas, encontrándose un costo óptimo de producción de 31e/t, competitivo cuando se considera un precio medio de mercado de 50e/t. Comparado con otros métodos de producción de oxígeno, este ciclo es competitivo en lo que respecta a la pureza y producción del oxígeno y el consumo energético. Esto motivó el estudio de configuraciones similares operando en dos contextos de generación de potencia que usan con oxicombustión: una planta de generación eléctrica y un motor de encendido provocado. En el primer contexto, se compara el desempeño de dos métodos de producción de oxígeno, operando en una planta de generación eléctrica (Ciclo Graz), que usa separación criogénica de aire como fuente de oxígeno, siendo el caso base del análisis. Se consideran dos configuraciones de membrana: de tres y cuatro entradas, cuya fuente de energía es un flujo de temperatura media dentro del ciclo de potencia. La configuración con una membrana de tres entradas mejora la eficiencia del caso base en un 0.61 %, y la de cuatro entradas en un 2.3 %. La producción de oxígeno requiere un menor consumo energético que en el caso base en las configuraciones de membrana, aumentando la salida de potencia neta del caso base. Por tanto, la producción de oxígeno con membranas muestra un desempeño prometedor, con una posible integración con una planta de producción de potencia que trabaja con oxicombustión. En el segundo contexto, el ciclo de membrana se acopla a un motor de encendido provocado. Distintas condiciones de operación son evaluadas en términos del consumo de combustible y disponibilidad de energía para la producción de oxígeno. La fuente de energía del ciclo de membrana es el flujo de gases de escape del motor. Primeramente, distintas concentraciones de oxígeno y relaciones de compresión del motor son estudiadas a un régimen medio, comparando el desempeño con la operación convencional del motor. Una concentración media (30 %) fue hallada como óptima en el estudio, cuyas condiciones de operación permiten un aumento considerable de la relación de compresión del motor. En segundo lugar, se realiza un estudio de plena carga del motor en un rango amplio de regímenes de giro del motor. El motor de oxicombustión alcanza una operación sostenible en los regímenes estudiados, alcanzando los valores de referencia de plena carga. Se han obtenido consumos de combustible similares al caso convencional más eficiente cuando la relación de compresión es elevada en el caso de oxicombustión. En tercer lugar, se han encontrado límites operativos en cargas parciales y altitud. La tendencia de consumo de combustible del caso con oxicombustión es similar a un motor convencional sobrealimentado a cargas parciales, mejorando el desempeño de un motor de aspiración natural. La menor carga alcanzable esta entre 40-50% de la máxima carga, dependiendo de la relación de compresión del motor. Por otro lado, el sistema muestra un desempeño adecuado hasta los 4000 m de altitud. Se concluye que el ciclo de producción de oxígeno basado en membranas de separación de aire muestra flexibilidad para operar en un amplio rango de energía disponible, mostrando un desempeño adecuado de acuerdo con los requerimientos del sistema. Adicionalmente, se encuentran posibles ventajas en cuanto al consumo de energía y costos operativos realizando un diseño cuidadoso. / [CA] Aquesta tesi avalua cicles de producció d'oxigen que usen membranes en tres contextos industrials, emfatitzant en la producció de potencia operant amb oxicombustió. La principal motivació es reduir les emissions contaminants sense afectar el funcionament del sistema.S'ha realitzat una anàlisi termoeconómico d'un cicle de producció d'oxigen basat en membranes per a avaluar la viabilitat d'aquestes instal·lacions en una planta de ceràmica. El cicle s'impulsa per gasos reciclats de la planta i usa turbogrupos i intercanviadors de calor per a comprimir i calfar l'aire per a extraure el seu oxigen. Dues configuracions han sigut estudiades i s'ha trobat un cost òptim de producció d'oxigen de 31e/t, que es competitiu quan es considera un preu de mercat de 50e/t. Comparat amb altres mètodes de producció d'oxigen, aquest cicle mostra un comportament competitiu pel que fa a puresa d'oxigen, producció i consum energètic. Això va motivar l'estudi de configuracions similars operant en dos contexts diferents de generació de potencia que operen amb oxicombustió: una planta de generació elèctrica i un motor d'encesa provocada.En el primer context, s'ha comparat el funcionament de dos mètodes de producció d'oxigen diferents, operant amb una planta de generació elèctrica (cicle Graz), que usa separació criogènica d'aire com a font d'oxigen, sent el cas base de l'anàlisi. S'han considerat dues configuracions de membrana: de tres i quatre entrades, la font d'energia de les quals és un flux de temperatura mitjana dins del cicle de potència. La configuració amb una membrana de tres entrades millora l'eficiència del cas base amb un 0.61 %, mentre que la de quatre entrades comporta una millora d'un 2.3 %. La producció d'oxigen requerix menys consum energètic que en el cas base en les dues configuracions de membrana, augmentant l'eixida de potencia neta del cas base. Per tant, la producció d'oxigen amb membranes mostra un funcionament prometedor, amb una possible integració amb una planta de producció de potencia que treballa amb oxicombustió.En el segon context, el cicle de membrana s'acobla a un motor d'encesa provocada. Diferents condicions d'operació han sigut avaluades en termes de consum de combustible i disponibilitat d'energia per a la producció d'oxigen. La font d'energia per a la producció d'oxigen es el flux de gasos d'escapament del motor. Primerament, diferents concentracions d'oxigen i relacions de compressió del motor han sigut estudiades a un regim mitja, comparant el funcionament amb el d'un motor convencional. Una concentració mitjana (30%) va ser trobada com a òptima en l'estudi, les condicions d'operació del qual permeten un augment considerable de la relació de compressió del motor. En segon lloc, s'ha realitzat un estudi a plena carrega del motor en un rang ampli de règims de gir del motor. El motor d'oxicombustió aconseguix una operació sostenible en els règims estudiats, aplegant als valors de referencia a plena carrega. S'han obtingut consums de combustible similars al cas d'operació convencional mes eficient quan la relació de compressió es elevada en el cas d'oxicombustió.En tercer lloc, s'han trobat límits operatius referents a l'operació a carregues parcials i altitud. La tendència de consum de combustible del cas amb oxicombustió es similar a la d'un motor convencional sobrealimentat a carregues parcials, mentre que millora el funcionament d'un motor d'aspiració natural. La menor carrega assolible esta entre 40-50% de la màxima carrega, depenent de la relació de compressió del motor. Per una altra banda, el sistema mostra un funcionament adequat fins als 4000m d'altitud. Es pot dir que el cicle de producció d'oxigen basat en membranes de separació d'aire mostra flexibilitat per a operar en un rang ampli d'energia disponible, mostrant un funcionament adequat d'acord amb els requeriments del sistema. Addicionalment, es poden trobar posibles avantatges en consum d'energia i costs operatius realitzant un disseny cuidadós. / [EN] This thesis assesses oxygen production cycles based on membranes in three industrial situations, emphasizing power production operating under oxycombustion. The primary motivation is the reduction of pollutant emissions while not affecting the system's thermal efficiency.Thus, a thermoeconomic analysis of a membrane-based oxygen production cycle is performed to assess the viability of these facilities in the context of a ceramic plant. The cycle is driven by recycling gases within the plant and uses turbochargers and heat exchangers to compress and heat the air for oxygen obtention. Two configurations were studied, finding an optimum oxygen production cost of 31e/t was found, being competitive when compared with an average wholesale market price of 50e/t. Compared with other oxygen production methods, this cycle exhibits a competitive behavior regarding oxygen purity, production, and energy consumption. The promising results of this analysis motivate the study of similar configurations working in two oxycombustion contexts: a power plant and a spark-ignition engine. Two oxygen production methods operating with a power production plant (Graz cycle) are compared in the first context. The power plant uses cryogenic air separation as its oxygen source, the baseline in this analysis. Therefore, two membrane configurations are considered: three-end and four-end membranes. A medium-temperature stream within the power production cycle is the energy source to drive the membrane cycles. Both cases are compared with the baseline Graz cycle operation. The three-end membrane-based cycle improves the baseline efficiency by 0.61% and the four-end by 2.30 %. The oxygen production requires less power consumption in the membrane cases than in the baseline, increasing the net power output. Thus, membrane-based cases display a promising performance, with possible integration within an oxycombustion power plant. In the second context, the membrane-based cycle is coupled within an oxycombustion spark-ignition engine, where different operation conditions are evaluated regarding fuel consumption and energy availability for oxygen production. The energy source to drive the membrane-based cycle is the exhaust gases stream. As a first step, different oxygen concentrations and engine compression ratios are studied at medium speed, comparing the performance with the engine's conventional operation. Medium oxygen concentration (30 %) was found to be optimum. This concentration allows the operation at a high engine compression ratio. Secondly, a full-load study in a wide range of engine speeds is made. The oxycombustion engine achieves a sustainable operation at the studied speeds, reaching the reference full-load power values. Similar fuel consumptions regarding the most efficient conventional case are achieved when the engine compression ratio is elevated under oxycombustion. Thirdly, operative limits regarding part-load and altitude operation are found. The fuel consumption behavior of the oxycombustion case is similar to a conventional turbocharged engine at part-load while improving a naturally aspirated engine operation. The minimum achievable load is between 40 to 50% of the maximum load, depending on the engine compression ratio. The membrane cycle operation is affected at lower loads. On the other hand, the system shows a suitable performance up to 4000 m. Thus, it can be concluded that the membrane-based oxygen production cycle exhibits flexibility to work in a wide range of available energy, displaying a suitable performance according to the requirements. Additionally, possible advantages in energy consumption and operative costs could be found when a careful design is performed. / The author would like to acknowledge the financial support received through contract ACIF/2020/246 of the Conselleria d’Innovació, Universitats, Ciència i Societat Digital. / Gutiérrez Castro, FA. (2023). Assessment of highly turbocharged oxygen production cycles coupled with power generation systems working under oxycombustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200173

Page generated in 0.4167 seconds