• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 887
  • 408
  • 269
  • 160
  • 120
  • 33
  • 30
  • 27
  • 24
  • 18
  • 14
  • 14
  • 13
  • 13
  • 13
  • Tagged with
  • 2397
  • 343
  • 323
  • 280
  • 259
  • 258
  • 153
  • 147
  • 146
  • 144
  • 136
  • 126
  • 112
  • 110
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Développement d'un outil d'aide à la conception et au fonctionnement d'un ensemble vis-fourreau industriel application à l'injection des thermoplastiques chargés de fibres de verre longues /

Moguedet, Maël Charmeau, Jean-Yves. Béreaux, Yves. January 2007 (has links)
Thèse doctorat : Chimie des Polymères : Villeurbanne, INSA : 2005. / Titre provenant de l'écran-titre. Bibliogr. p. 119-124.
222

Dispersion and gradients in flow injection /

Herbelin, Armando L. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 145-148).
223

Short-wavelength InAl(x)Ga(1-x)P quantum well lasers and InP quantum dot coupled to strained InAl(x)Ga(1-x)P quantum well lasers grown by MOCVD

Heller, Richard Dean. Dupuis, Russell, January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Supervisor: Russell D. Dupuis. Vita. Includes bibliographical references. Available also from UMI Company.
224

Micro sequential injection for bioanalytical assays /

Wu, Chao-Hsiang, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 156-160).
225

Singular behaviour of Non-Newtonian fluids /

Mennad, Abed. January 1900 (has links)
Thesis (MTech (Mechanical Engineering))--Peninsula Technikon, 1999. / Word processed copy. Summary in English. Includes bibliographical references (leaves 95-99). Also available online.
226

Injection in plasma-based electron accelerators

Yi, Sunghwan 14 February 2013 (has links)
Plasma-based accelerators aim to efficiently generate relativistic electrons by exciting plasma waves using a laser or particle beam driver, and "surfing" electrons on the resulting wakefields. In the blowout regime of such wakefield acceleration techniques, the intense laser radiation pressure or beam fields expel all of the plasma electrons transversely, forming a region completely devoid of electrons ("bubble") that co-propagates behind the driver. Injection, where initially quiescent background plasma electrons become trapped inside of the plasma bubble, can be caused by a variety of mechanisms such as bubble expansion, field ionization or collision between pump and injector pulses. This work will present a study of the injection phenomenon through analytic modeling and particle-in-cell (PIC) simulations. First, an idealized model of a slowly expanding spherical bubble propagating at relativistic speeds is used to demonstrate the importance of the bubble's structural dynamics in self-injection. This physical picture of injection is verified though a reduced PIC approach which makes possible the modeling of problem sizes intractable to first-principles codes. A more realistic analytic model which takes into account the effects of the detailed structure of the fields surrounding the bubble in the injection process is also derived. Bubble expansion rates sufficient to cause injection are characterized. A new mechanism for generation of quasi-monoenergetic electron beams through field ionization induced injection is presented, and simulation results are compared to recent experimental results. Finally, a technique for frequency-domain holographic imaging of the evolving bubble is analyzed using PIC as well as a novel simulation method for laser probe beam propagation. / text
227

Electronic and spintronic transport in germanium nanostructures

Liu, En-Shao 23 June 2014 (has links)
The digital information processing system has benefited tremendously from the invention and development of complementary metal-oxide-semiconductor (CMOS) integrated circuits. The relentless scaling of the physical dimensions of transistors has been consistently delivering improved overall circuit density and performance every technology generation. However, the continuation of this trend is in question for silicon-based transistors when quantum mechanical tunneling becomes more relevant; further scaling in feature sizes can lead to increased leakage current and power dissipation. Numerous research efforts have been implemented to address these scaling challenges, either by aiming to increase the performance at the transistor level or to introduce new functionalities at the circuit level. In the first approach, novel materials and device structures are explored to improve the performance of CMOS transistors, including the use of high-mobility materials (e.g. III-V compounds and germanium) as the channel, and multi-gate structures. On the other hand, the overall circuit capability could be increased if other state variables are exploited in the electronic devices, such as the electron spin degree of freedom (e.g. spintronics). Here we explore the potential of germanium nanowires in both CMOS and beyond-CMOS applications, studying the electronic and spintronic transport in this material system. Germanium is an attractive replacement to silicon as the channel material in CMOS technology, thanks to its lighter effective electron and hole mass. The nanowire structures, directly synthesized using chemical vapor deposition, provide a natural platform for multi-gate structures in which the electrostatic control of the gate is enhanced. We present the realization and scaling properties of germanium-silicon-germanium core-shell nanowire n-type, [omega]-gate field-effect transistors (FETs). By studying the channel length dependence of NW FET characteristics, we conclude that the intrinsic channel resistance is the main limiting factor of the drive current of Ge NW n-FETs. Utilizing the electron spins in semiconductor devices can in principle enhance overall circuit performance and functionalities. Electrical injection of spin-polarized electrons into a semiconductor, large spin diffusion length, and an integration friendly platform are desirable ingredients for spin based-devices. Here we demonstrate lateral spin injection and detection in Ge NWs, by using ferromagnetic metal contacts and tunnel barriers for contact resistance engineering. We map out the contact resistance window for which spin transport is observed, manifestly showing the conductivity matching required for spin injection. / text
228

Short-wavelength InAl(x)Ga(1-x)P quantum well lasers and InP quantum dot coupled to strained InAl(x)Ga(1-x)P quantum well lasers grown by MOCVD

Heller, Richard Dean 28 August 2008 (has links)
Not available / text
229

Automatic draft angles addition for moulded parts in an assembly

Yan, Yan, 甄昕 January 2003 (has links)
published_or_final_version / abstract / toc / Mechanical Engineering / Master / Master of Philosophy
230

Gas injection as an alternative option for handling associated gas produced from deepwater oil developments in the Gulf of Mexico

Qian, Yanlin 30 September 2004 (has links)
The shift of hydrocarbon exploration and production to deepwater has resulted in new opportunities for the petroleum industry(in this project, the deepwater depth greater than 1,000 ft) but also, it has introduced new challenges. In 2001,more than 999 Bcf of associated gas were produced from the Gulf of Mexico, with deepwater associated gas production accounting for 20% of this produced gas. Two important issues are the potential environmental impacts and the economic value of deepwater associated gas. This project was designed to test the viability of storing associated gas in a saline sandstone aquifer above the producing horizon. Saline aquifer storage would have the dual benefits of gas emissions reduction and gas storage for future use. To assess the viability of saline aquifer storage, a simulation study was conducted with a hypothetical sandstone aquifer in an anticlinal trap. Five years of injection were simulated followed by five years of production (stored gas recovery). Particular attention was given to the role of relative permeability hysteresis in determining trapped gas saturation, as it tends to control the efficiency of the storage process. Various cases were run to observe the effect of location of the injection/production well and formation dip angle. This study was made to: (1) conduct a simulation study to investigate the effects of reservoir and well parameters on gas storage performance; (2) assess the drainage and imbibition processes in aquifer gas storage; (3) evaluate methods used to determine relative permeability and gas residual saturation ; and (4) gain experience with, and confidence in, the hysteresis option in IMEX Simulator for determining the trapped gas saturation. The simulation results show that well location and dip angle have important effects on gas storage performance. In the test cases, the case with a higher dip angle favors gas trapping, and the best recovery is the top of the anticlinal structure. More than half of the stored gas is lost due to trapped gas saturations and high water saturation with corresponding low gas relative permeability. During the production (recovery) phase, it can be expected that water-gas production ratios will be high. The economic limit of the stored gas recovery will be greatly affected by producing water-gas ratio, especially for deep aquifers. The result indicates that it is technically feasible to recover gas injected into a saline aquifer, provided the aquifer exhibits the appropriate dip angle, size and permeability, and residual or trapped gas saturation is also important. The technical approach used in this study may be used to assess saline aquifer storage in other deepwater regions, and it may provide a preliminary framework for studies of the economic viability of deepwater saline aquifer gas storage.

Page generated in 0.0521 seconds