• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 44
  • 37
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 10
  • 7
  • 5
  • 2
  • Tagged with
  • 334
  • 334
  • 124
  • 57
  • 40
  • 39
  • 39
  • 38
  • 38
  • 35
  • 32
  • 31
  • 31
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Analysis Of Minimum Safe Cycle Time In Injection Molding: Selection Of Frozen Layer Thickness

Chang, Keh-Chyou 05 September 2008 (has links)
No description available.
112

Multivariable Model-Based Predictive Control for Injection Molding

Lu, Haiqian 09 1900 (has links)
The rigorous quality criterion and intricate shapes of plastic injection molded parts require molders to improve process control systems in order to keep their competitive status in the market. In recent research, various advanced control algorithms are employed to develop in-line process controllers. In modem controllers design, in-mold process variables play a very important role in connecting machine variables and quality variables. Model-based predictive control (MPC) is used to investigate the controllability of cavity pressure and cavity temperature within a cycle or cycle-to-cycle. The objective of the present work is to demonstrate a procedure to develop MPC controllers based on simulation results. Moldflow® was used to simulate the injection molding process for a thin-wall cell phone cover. Cavity pressure profiles and part surface temperature profiles were extracted to develop the dynamic model for controller design. Thermal analysis for the cooling stage was investigated by ANSYS® FEM software. Mold surface temperature profiles were used for controller design. Dynamic matrix control, a type of MPC control, was developed by using Matlab® MPC Toolbox. A single-input/single-output MPC controller was developed to control cavity pressure in filling stage by manipulating injection flow rate. Simulation studies were then used to develop a MPC controller to implement a closed-loop control. The controller performed very well to control the pressure profile to trace the set-point, even with melt temperature or mold temperature change. Two MPC controllers were developed to control cavity surface cycle average temperature by manipulating coolant flow rate and coolant temperature. Both controllers show good controllability for cycle average temperature control. A two-input/two-output DMC controller was implemented to control cavity pressure and part surface temperature in the packing stage. Packing pressure and mold temperature were manipulated to trace the controlled profile set-points in each sampling time. Results shows that the controller was able to meet the set-point very well, for an unmeasured disturbance, based on a closed-loop test. All the controllers were developed based on simulation results, which will have some differences with real production data. Therefore, the model parameter and controller tuning parameter should be validated and modified if needed before real-time application. / Thesis / Master of Applied Science (MASc)
113

Mold temperature- and molar mass-dependent structural formation in micro-injection molding of isotactic polypropylene

Zhao, X., Liao, T., Yang, X., Coates, Philip D., Whiteside, Benjamin R., Barker, D., Thompson, Glen P., Jiang, Z., Men, Y. 27 June 2022 (has links)
Yes / The structural formation and development of isotactic polypropylene (iPP) upon the micro-injection molding process was investigated at different mold temperatures and molecular weights utilizing a real-time synchrotron radiation small angle X-ray scattering (SAXS) technique combined with a customized micro-injection molding apparatus. Shish-kebab structure and parent-daughter lamellae were found to be formed during micro-injection molding for all iPP samples. In the case of kebab lamellae, a considerable growth in the long period and in the average thickness of lamellar crystallites and amorphous domains is observed at initial stages of crystallization for samples molded at varying temperatures. This effect is caused by the successive formation of thin lamellae in the outer layer and thick lamellae in the inner layer during the manufacturing process as evidenced by the spatial distribution of the crystalline lamellae across the thickness. In addition, the length of the shish formation increases remarkably at the onset of crystallization, the extent of which is dependent on the mold temperature. Despite the large changes of the lamellar stacks and the shish misorientation, the final length of the shish remains essentially unchanged when varying mold temperature. Since there is a critical orientation molecular weight above which the chains are stretched and oriented to form stable shish, the iPP sample with a low molar mass exhibits an overall decrease in the scattering intensity of SAXS patterns compared to the high molecular weight polypropylene. / This work is financially sponsored by the National Key R&D Program of China (2018YFB0704200), National Natural Science Foundation of China (21674119, 21790342 and 51525305), and Royal Society Newton Advanced Fellowship, United Kingdom (NA150222).
114

Assessing an Orientation Model and Stress Tensor for Semi-Flexible Glass Fibers in Polypropylene Using a Sliding Plate Rheometer: for the Use of Simulating Processes

Ortman, Kevin Charles 02 September 2011 (has links)
Great interest exists in adding long fibers into polymeric fluids due to the increase in properties associated with the composite, as compared to the neat resin. These properties, however, are dependent on the fiber orientations generated during processing, such as injection molding. In an effort to optimize industrial processing, optimize mold design, and maximize desired properties of the final part, it is highly desirable to predict long fiber orientation as a function of processing conditions. The purpose of this research is to use rheology as a fundamental means of understanding the transient orientation behavior of concentrated long glass (> 1mm) fiber suspensions. Specifically, this research explores the method of using rheology as a means of obtaining stress tensor and orientation model parameters needed to accurately predict the transient fiber orientation of long glass fiber reinforced polypropylene, in a well-defined simple shear flow, with the hopes of extending the knowledge gained from these fundamental experiments for the use of simulating processing flows, such as injection molding. Two fiber orientation models were investigated to predict the transient orientation of the long glass fiber systems explored. One model, the Folgar-Tucker model, has been particularly useful for predicting fiber orientation in short glass fiber systems and was used in this paper to assess its performance with long glass fibers. A second orientation model, one that accounts for the semi-flexibility of fibers, was extended to describe non-dilute suspension and coupled with an augmented stress tensor that accounts for fiber bending. Stress tensor and orientation model parameters were determined (in all cases) by best fitting these coupled equations to measured stress data obtained using a sliding plate rheometer. Results showed the semi-flexible orientation model and stress tensor combination, overall, provided improved rheological results as compared to the Folgar-Tucker model when coupled with the stress tensor of Lipscomb (1988). Furthermore, it was found that both stress tensors required empirical modification to accurately fit the measured data. Both orientation models provided encouraging results when predicting the transient fiber orientation in a sliding plate rheometer, for all initial fiber orientations explored. Additionally, both orientation models provided encouraging results when the model parameters, determined from the rheological study, were used for the purpose of predicting fiber orientation in an injection molded center-gated disk. / Ph. D.
115

Factors Affecting Fiber Orientation and Properties in Semi-Flexible Fiber Composites Including the Addition of Carbon Nanotubes

Herrington, Kevin D. 24 September 2015 (has links)
Within this research, factors affecting the orientation of injection molded long fiber composites in an end-gated plaque were investigated. Matrix viscosity was found to have a small effect on fiber orientation. The impact matrix viscosity had on orientation was dependent on fiber loading. At lower fiber loadings, the higher viscosity material had a more asymmetric orientation profile throughout the samples and less of a shell-core-shell orientation. At higher fiber loadings, there were few differences in orientation due to matrix viscosity. Fiber concentration was found to have a larger influence on fiber orientation than matrix viscosity. Increased fiber concentration led to a lower degree of flow alignment and a broader core region at all locations examined, following the trend previously reported for short fiber composites. The orientations of three different fiber length distributions of glass fiber (GF) were compared. The longer fibers in the fiber length distribution were shown to have a disproportionate effect on orientation, with weight average aspect ratio being better than number average aspect ratio at indicating if the GF and CF samples orientated comparably. To improve properties transverse to the main flow direction, the super critical carbon dioxide aided deagglomeration of multi-walled carbon nanotubes (CNTs) was used to create injection molded multiscale composites with CNT, CF, and polypropylene. The addition of CNTs greatly improved the tensile and electrical properties of the composites compared to those without CNTs. The degree of improvement from adding CNTs was found to be dependent on CF concentration, indicating that the CNTs were most likely interacting with the CF and not the polymer. A CNT concentration of 1 wt% with a tenfold degree of expansion at 40 wt% CF proved to be optimum. A large improvement in the tensile properties transverse to the flow direction was found implying that the CNTs were not highly flow aligned. Tensile and electrical properties began to fall off at higher CNT loadings and degrees of expansion indicating the importance of obtaining a good dispersion of CNTs in the part. / Ph. D.
116

Design and Development of Single Element Focused Ultrasound Transducers

Dodoo, Neffisah Fadillah Naa Darkua 11 June 2024 (has links)
Histotripsy is a non-invasive, non-thermal, and non-ionizing therapy that utilizes converging high-pressure ultrasound waves at a focal point to produce cavitation and induce mechanical tissue destruction. Currently, rapid prototyped histotripsy transducers consist of multiple elements and are made using 3D printing methods. Multi-element transducers introduce size constraints and 3D printing has limitations in material choice, cost, and time for larger scale manufacturing. This thesis investigates the development of rapid prototyped single element histotripsy transducers and the use of injection molding for transducer fabrication, utilizing an in-house metal CNC mill for mold manufacturing and a desktop injection molding machine. Nylon 101 and 30% glass-filled nylon were chosen as the plastics to inject as these were found to have the most similar acoustic properties to WaterShed, an ABS-like plastic currently used. Six single-element transducers were constructed with a 2 MHz curved Pz26 piezoceramic disc: two with SLA 3D printed housing, two with SLS 3D printed housing, and two with injection molded housing. Electrical impedance, beam dimensions, focal pressure output, and cavitation were characterized for each element. The results show that rapid prototyped single element transducers can generate enough pressure to perform histotripsy. This marks the development of the first rapid prototyped single element histotripsy transducer and further confirms that injection molding can produce transducers comparable, if not identical or potentially superior, to 3D printed counterparts. Future work aims to further characterize these transducers, explore more material options, and apply injection molding to various transducer designs while optimizing both CNC and injection molding parameters. / Master of Science / Histotripsy is a form of cancer therapy that can non-invasively treat tumors using focused ultrasound waves. Focused ultrasound transducers are used to achieve this and are currently prototyped using 3D printing. However, these methods are limiting in material options and upscale manufacturing. Many of these devices currently used tend to be larger in size, comparable to the size of a mixing bowl, which limits its applications. This thesis investigates the development of single element histotripsy transducers and the use of injection molding for transducer fabrication, using an in-house metal CNC mill for mold manufacturing and desktop injection molding machine. Nylon 101 and 30% glass-filled nylon were chosen as the plastics to inject due to their ideal acoustic properties. Six single-element transducers were constructed: two with SLA 3D printing, two with SLS 3D printing, and two with injection molding. All transducers were tested and compared against each other. The results show that 3D printed single element transducers can perform histotripsy and that injection molding can produce comparable results. Future work should continue to test and characterize these transducers, explore more material options for injection molding, apply injection molding to other transducer designs, and optimize CNC and injection molding parameters.
117

Design plně elektrického vstřikovacího lisu s uzavírací silou do 100 tun / Design of Fully Electric Injection Molding Machine with a Clamping Force of 100 Tons

Otevřelová, Eliška January 2020 (has links)
This thesis deals with designing an injection molding machine. The design concept is focused on a fully electric-powered machine with a clamping force up to 100 tons. The work analyzes the current market and products. The main goal of the thesis is to solve aesthetic and technical deficiencies that were found during research.
118

Optimalizace technologických parametrů vstřikování plastového dílce / Optimization of technological parameters of injection plastic parts

Ulrich, Josef January 2014 (has links)
This thesis describes the optimalization of technological parameters during commissioning of injection mold manufacturing. In the introduction, there is general literary studies of plastics, injection molds, injection holding machine, injection holding technology and their effect on quality. The practical part includes an analysis of current state, calculation of injection parameters, moldflow analysis and sampling on the machine. Finally, there is choice of optimal injection holding parameters, design of workplace and technical-economic evaluation.
119

Technologie výroby tělesa konektoru z recyklátu / Production technology of the connector body from recykled material

Brhel, Michal January 2016 (has links)
Study developed during the Master's degree studies of Mechanical Engineering deals with the use of recycled plastic in the injection molding and its influence on the mechanical properties of the mold. Examined product is used in the automotive industry as a connector body. The housing is manufactured from a plastic material, polyamide. The annual production volume of 3 000 000 pieces. According to tests specified in standard USCAR2 regrind influence on mechanical properties and dimensions was evaluated. After the technical evaluation of the project, research was also judged from economic point of view. In this task, savings with the different content of the recycled material during production was calculated. The final chapters justify change of properties and they are proposing the use of recycled materials in practice.
120

Materials and process design for powder injection molding of silicon nitride for the fabrication of engine components

Lenz, Juergen H. (Juergen Herbert) 16 March 2012 (has links)
A new material system was developed for fabricating the combustion engine of an unmanned aerial vehicle. The material system consisted of a mixture of nanoscale and microscale particles of silicon nitride. Magnesia and yttria were used as sintering additives. The powders were mixed with a paraffin binder system. The binder-powder was analyzed for its properties and molding attributes. The study involved several steps of the development and processing. These steps include torque rheometery analysis, mixing scale-up, property measurements of binder-powder, injection molding, binder removal, sintering, scanning electron microscopy analysis and mechanical properties measurements. Simulations of the injection molding process were conducted to assess the feasibility of manufacturing a ceramic engine and to determine its optimal process parameters. The model building required for the simulation was based on flow and solidification behavior data compiled for the binder-powder mixture. The simulations were performed using the Moldfow software package. A design of experiments approach was set up in order to gain an understanding of critical process parameters as well as identifying a feasible process window. Quality criteria were then analyzed in order to determine the optimal production parameters. The study resulted in the successful development of design parameters that will enable fabrication of silicon nitride engine components by powder injection molding. / Graduation date: 2012

Page generated in 0.0266 seconds