• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation and characterization of Cu(In,Al)Se2 thin film

Wu, Wei-Jung 13 August 2010 (has links)
Polycrystalline Cu(In,Al)Se2 films were deposited by four-source evaporation of Cu, In, Al, and Se using Knudsen type sources in which the elemental fluxes were coincident onto soda lime glass substrates. The single-phase films with composition of Cu:In:Al:Se = 28:15:9:48 which were confirmed by X-ray diffraction and micro-Raman spectroscopy were deposited at substrate temperature of 560¢J. Secondary phases were observed when temperature of substrate is below 560¢J due to incompletely reaction. Under fixed effusion flux, the value of Cu/(In+Al) becomes larger as temperature of substrate increase. However, the value of Al/(In+Al) keeps nearly constant as temperature increase. The band gap is 1.53 eV derived from the result of spectrophotometer. The room temperature resistivity, Hall mobility and carrier concentration of the films are 0.28 £[cm, 24.63 cm2V-1s-1 and 1.27x1019 cm-3 respectively. And the conductive type is p-type. By the way, we try to grow Cu(In,Al)Se2 film in the presence of an Sb beam at substrate temperature of 440¢J. After the addition of an Sb beam, surface morphology become smooth and compact, but there is no significant grain growth. No matter an Sb beam adds or not, secondary phases were observed in both case due to the low temperature of substrate.
2

Modeling incomplete penetrance in long QT syndrome type 3 (LQT3) through ion channel heterogeneity

Miller, Jacob Andrew January 2022 (has links)
No description available.

Page generated in 0.013 seconds