• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical and optical characterization of InP nanowire-based photodetectors

Dawei, Jiang January 2014 (has links)
This thesis deals with electrical and optical characterization  of p+i–n+ nanowire-based photodetectors/solar  cells. I have investigated their I-V performance and found that all of them exhibit a clear rectifying behavior with an ideality factor around 2.2 at 300K.  used Fourier transform infrared spectroscopy to extract their optical properties. From the spectrally resolved photocurrent data, I conclude that the main photocurrent is generated in the i-segment of the nanowire (NW) p-i-n junctions, with negligible  contribution from the substrate.   I also used a C-V technique to investigate the impurity/doping profiles of the NW p+-i-n+ junction.  The technique has been widely used for investigations of doping profiles in planar p-n junctions, in particular with one terminal (n or p) highly doped. To verify the accuracy of the technique, I also used a planar Schottky  sample with an already known doping profile for a test  experiment. The result is very similar to the actual data. When we used the technique to investigate the doping level in the NWs photodetectors grown on InP substrates, the results show a very high capacitance above 800pF which most likely is due to the influence of the parasitic capacitance from the insulating layer of SiO2. Thus,  a new sample design is required to investigate the  doping profiles of NWs.
2

Electrical and Optical Characteristics of InP Nanowires based p-i-n Photodetectors

Ahmed, Rizwan, Abbas, Shahid January 2010 (has links)
Photodetectors are a kind of semiconductor devices that convert incoming light to an electrical signal. Photodetectors are classified based on their different structure, fabrication technology, applications and different sensitivity. Infrared photodetectors are widely used in many applications such as night vision, thermal cameras, remote temperature sensing, and medical diagnosis etc.   All detectors have material inside that is sensitive to incoming light. It will absorb the photons and, if the incoming photons have enough energy, electrons will be excited to higher energy levels and if these electrons are free to move, under the effect of an external electric field, a photocurrent is generated.   In this project Fourier Transform Infrared (FT-IR) Spectroscopy is used to investigate a new kind of photodiodes that are based on self-assembled semiconductor nanowires (NWs) which are grown directly on the substrate without any epi-layer. The spectrally resolved photocurrent (at different applied biases) and IV curves (in darkness and illumination) for different temperatures have been studied respectively. Polarization effects (at low and high Temperatures) have been investigated.  The experiments are conducted for different samples with high concentration of NWs as well as with lower concentration of NWs in the temperature range from 78 K (-195ºC) to 300 (27ºC). These photodiodes are designed to work in near infrared (NIR) spectral range.   The results show that the NW photodetectors indeed are promising devices with fairly high break down voltage, change of photocurrent spectra with polarized light, low and constant reverse saturation current (Is). The impact of different polarized light on photocurrent spectra has been investigated and an attempt has been made to clarify the observed double peak of InP photocurrent spectrum. Our investigations also include a comparison to a conventional planar InP p-i-n photodetector.

Page generated in 0.3278 seconds