• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A PARALLEL IMPLEMENTATION OF GIBBS SAMPLING ALGORITHM FOR 2PNO IRT MODELS

Rahimi, Mona 01 August 2011 (has links)
Item response theory (IRT) is a newer and improved theory compared to the classical measurement theory. The fully Bayesian approach shows promise for IRT models. However, it is computationally expensive, and therefore is limited in various applications. It is important to seek ways to reduce the execution time and a suitable solution is the use of high performance computing (HPC). HPC offers considerably high computational power and can handle applications with high computation and memory requirements. In this work, we have applied two different parallelism methods to the existing fully Bayesian algorithm for 2PNO IRT models so that it can be run on a high performance parallel machine with less communication load. With our parallel version of the algorithm, the empirical results show that a speedup was achieved and the execution time was considerably reduced.
2

Alternative estimation approaches for some common Item Response Theory models

Sabouri, Pooneh, 1980- 06 January 2011 (has links)
In this report we give a brief introduction to Item Response Theory models and multilevel models. The general assumptions of two classical Item Response Theory, 1PL and 2PL models are discussed. We follow the discussion by introducing a multilevel level framework for these two Item Response Theory Models. We explain Bock and Aitkin's (1981) work to estimate item parameters for these two models. Finally we illustrate these models with a LSAT exam data and two statistical softwares; R project and Stata. / text
3

Obsession with Covid-19 in Peruvian police and armed forces: Validation of the obsession with Covid-19 Scale in Spanish using SEM and IRT models

Caycho-Rodríguez, Tomás, Vilca, Lindsey W., Carbajal-León, Carlos, Heredia-Mongrut, José, Gallegos, Miguel, Portillo, Nelson, Reyes-Bossio, Mario, Barboza-Palomino, Miguel 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / The study evaluated the psychometric properties of the Spanish version of the Obsession with COVID-19 Scale (OCS) in 214 police and members of the armed forces (M age = 29.33 years, SD = 11.28). The one-dimensionality and satisfactory reliability of OCS were confirmed with confirmatory factor analysis, Item Response Theory analysis, Cronbach’s alpha, and McDonald’s omega. The scale is useful for identifying individuals with low levels of persistent and disturbing thoughts about COVID-19. COVID-19 obsession was associated with COVID-19 fear, anxiety, and depression. The OCS is suitable for investigating the psychological impact of COVID-19 on members of the police and armed forces.
4

A Comparison of Two MCMC Algorithms for Estimating the 2PL IRT Models

Chang, Meng-I 01 August 2017 (has links) (PDF)
The fully Bayesian estimation via the use of Markov chain Monte Carlo (MCMC) techniques has become popular for estimating item response theory (IRT) models. The current development of MCMC includes two major algorithms: Gibbs sampling and the No-U-Turn sampler (NUTS). While the former has been used with fitting various IRT models, the latter is relatively new, calling for the research to compare it with other algorithms. The purpose of the present study is to evaluate the performances of these two emerging MCMC algorithms in estimating two two-parameter logistic (2PL) IRT models, namely, the 2PL unidimensional model and the 2PL multi-unidimensional model under various test situations. Through investigating the accuracy and bias in estimating the model parameters given different test lengths, sample sizes, prior specifications, and/or correlations for these models, the key motivation is to provide researchers and practitioners with general guidelines when it comes to estimating a UIRT model and a multi-unidimensional IRT model. The results from the present study suggest that NUTS is equally effective as Gibbs sampling at parameter estimation under most conditions for the 2PL IRT models. Findings also shed light on the use of the two MCMC algorithms with more complex IRT models.
5

Bayesian Estimation of Mixture IRT Models using NUTS

Al Hakmani, Rahab 01 December 2018 (has links)
The No-U-Turn Sampler (NUTS) is a relatively new Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior that common MCMC algorithms such as Gibbs sampling or Metropolis Hastings usually exhibit. Given the fact that NUTS can efficiently explore the entire space of the target distribution, the sampler converges to high-dimensional target distributions more quickly than other MCMC algorithms and is hence less computational expensive. The focus of this study is on applying NUTS to one of the complex IRT models, specifically the two-parameter mixture IRT (Mix2PL) model, and further to examine its performance in estimating model parameters when sample size, test length, and number of latent classes are manipulated. The results indicate that overall, NUTS performs well in recovering model parameters. However, the recovery of the class membership of individual persons is not satisfactory for the three-class conditions. Also, the results indicate that WAIC performs better than LOO in recovering the number of latent classes, in terms of the proportion of the time the correct model was selected as the best fitting model. However, when the effective number of parameters was also considered in selecting the best fitting model, both fully Bayesian fit indices perform equally well. In addition, the results suggest that when multiple latent classes exist, using either fully Bayesian fit indices (WAIC or LOO) would not select the conventional IRT model. On the other hand, when all examinees came from a single unified population, fitting MixIRT models using NUTS causes problems in convergence.
6

Méthodes longitudinales pour l’analyse de la qualité de vie relative à la santé en cancérologie / Longitudinal methods for the health-related quality of life analysis in oncology

Barbieri, Antoine 27 June 2016 (has links)
L’étude de la qualité de vie relative à la santé est un objectif prioritaire des essais cliniques en cancérologie pour évaluer l’efficacité d’une prise en charge ; elle est mesurée par le biais d’auto-questionnaire. Dans ce travail, nous proposons différentes modélisations statistiques pour l’analyse longitudinale de ce critère, ainsi que leur application sur des données issues de plusieurs essais cliniques. Une première partie présente les modèles issus de la théorie de réponse à l’item (IRT) pour réaliser une analyse longitudinale directement sur les données brutes (multi-réponses ordinales) et ce par dimension. Une fois replacés dans le contexte des modèles linéaires généralisés mixtes, une sélection conceptuelle de modèles IRT a conclu que le Graded response model semble le mieux adapté. Dans une seconde partie, nous proposons un modèle à équation structurelle permettant de prendre en compte conjointement l’aspect multidimensionnel et longitudinal de la qualité de vie. À l’aide de facteurs reflétés par des ensembles de variables observées, il permet de lier à chaque temps de mesure toutes les observations issues du questionnaire, tout en considérant également des variables explicatives. L’analyse longitudinale est réalisée sur le statut global de santé et les facteurs réduisant ainsi le nombre de tests. Enfin, une approche par mélanges de modèles mixtes est proposée pour obtenir des classes latentes à partir de trajectoires de qualité de vie. Cette approche a permis de caractériser des sous-populations homogènes et d’associer différente évolution de la qualité de vie suivant des profils particuliers de patients. / The health-related quality of life is a major objective in oncology clinical trials to improve patients’ care and better evaluate the impact of the treatments on their everyday life. Auto-questionnaires are usually used to measure this endpoint. In this work, different statistical models for the longitudinal analysis of health-related quality of life in oncology are proposed and applied to clinical trial data. First, we present different models derived from the item response theory (IRT) to achieve a longitudinal analysis directly on raw data (multi-response outcomes) for each dimension. Within the generalized linear mixed model background, a conceptual selection of the IRT models concluded that the graded response model seems to be the most suitable. Then, we propose a structural equation model which allows taking into account the multidimensional nature of data at each time and the longitudinal aspect induced by the repeated measurements. At each measurement time, the model allows to link all the observed variables issued from the questionnaire given explanatory variables. Two factors are estimated, each summarizing a set of observed variables. The longitudinal analysis is performed on the global health status and on the factors, thus reducing the number of tests. Finally, an approach based on a mixture of mixed models is used to obtain latent classes from quality of life trajectories. The approach has resulted in the identification of homogeneous subpopulations and their latent trajectory according to specific patient profiles.
7

Modelos multidimensionais da TRI com distribuições assimétricas para os traços latentes / Multidimensional IRT models with skew distributions for latent traits.

Gilberto da Silva Matos 15 December 2008 (has links)
A falta de alternativas ao modelo normal uni/multivariado já é um problema superado pois atualmente é possível encontrar inúmeros trabalhos que introduzem e desenvolvem generalizações da distribuição normal com relação `a assimetria, curtose e/ou multimodalidade (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006)). No contexto dos modelos unidimensionais da Teoria da Resposta ao Item (TRI), Bazán (2005) percebeu esta realidade e introduziu uma classe denominada PANA (Probito Assimétrico - Normal Assimétrica) a qual permite modelar possíveis comportamentos assimétricos de um modelo (uma probabilidade) de resposta ao item bem como a especificação de uma distribuição normal assimétrica para os traços latentes (unidimensionais) a qual é utilizada no processo de estimação. Motivado pela necessidade de melhor representar os fenômenos da área psicométrica (Heinen, 1996, p. 105) e da atual disponibilidade de distribuições elípticas assimétricas cujas propriedades são tão convenientes quanto aquelas devidas `a distribuição normal, a proposta do presente trabalho é apresentar uma extensão do modelo K-dimensional de 3 Parâmetros Probito (Kd3PP) com vetores de traços latentes normalmente distribuídos para o caso t-Assimétrico, gerando, assim, o que denominamos modelo Kd3PP-tA. Nossa proposta, portanto, pode ser considerada como uma extensão do trabalho desenvolvido por Bazán (2005) tanto no sentido de extender a distribuição unidimensional assimétrica dos traços latentes para o caso multidimensional quanto no que conscerne em considerar o achatamento (curtose) da distribuição. Nossa proposta também pode ser vista como uma extensão do trabalho de Béguin e Glas (2001) no sentido de desenvolver o método de estimação bayesiana dos modelos multidimensionais da TRI via DAGS (Dados Aumentados com Amostrador de Gibbs) para o caso em que os vetores de traços latentes comportam-se segundo uma distribuição multivariada t-Assimétrica. No desenvolvimento deste trabalho nos deparamos com uma das principais dificuldades encontradas no processo de estimação e inferência dos modelos multidimensionais da TRI que é a falta de identificabilidade e, com a intenção de ampliar e desmistificar nossos conhecimentos sobre um assunto ainda pouco explorado na literatura da TRI, apresentamos um estudo bibliográfico sobre este tema tanto sob o contexto da inferência clássica quanto bayesiana. Com o intuito de identificar situações particulares em que o uso de uma distribuição normal assimétrica para os traços latentes seja de maior relevância para a estimação e inferência dos parâmetros de item, bem como outros parâmetros relacionados à distribuição dos traços latentes, algumas análises sobre conjuntos de dados simulados são desenvolvidas. Como conclusão destas análises, podemos dizer que há uma melhora superficial quando a informação sobre uma possível assimetria na distribuição dos traços latentes não é ignorada. Além disso, os resultados favoreceram a seleção dos modelos que consideram distribuições assimétricas para os traços latentes, principalmente quando são considerados os modelos que possibilitam a estimação dos parâmetros de localização e escala da distribuição dos vetores de traços latentes. Duas principais contribuições que consideramos de ordem prática, são: a análise e a interpretação de testes através da estimação de modelos uni e multidimensionais da TRI que consideram tanto distribuições simétricas quanto assimétricas para os vetores de traços latentes e a disponibilização de uma função escrita em códigos R e C++ para a estimação dos modelos apresentados e desenvolvidos no presente trabalho. / The lack of alternatives to the univariate or multivariate normal model has been already solved because actually it has been possible to find several works that introduce and develop generalizations of the normal distribution in relation to the asymmetry, kurtosis and/or multimodality (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006). In the context of unidimensional models of the Item Response Theory (IRT), Baz´an (2005) observed this fact and introduced a class called PANA (Probito Assimétrico - Normal Assimétrica) which allows to take account for asymmetry in the shape of an item response model (probability) and the specification of a skew normal distribution for unidimensional latent traits which is used in the estimation process. Motivated by the need to better represent the phenomenon of psychometric area (Heinen, 1996, p. 105) and the current availability of skew elliptical distributions whose properties are as convenient as those due to normal distribution, the proposal of this work is to provide an extension of multidimensional 3 Parameters Probit model (Kd3PP) where latent traits vectors are normally distributed for the case of Skew-t distribution (Sahu et al., 2003), generating therefore what we call Kd3PP-St model. Our proposal, therefore, can be regarded as an extension of the work of Bazán (2005) in two ways: the first is extending the unidimensional skew normal distribution of latent traits to the multidimensional case and second in the sense to consider the flattening (kurtosis) of this distribution. Our proposal can also be seen as an extension of the work of B´eguin e Glas (2001) in the sense that we develop the Bayesian estimation method of the 3 parameters multidimensional item response model by DAGS (Augmentated Data with Gibbs sampling) for the case where the latent trait vectors behave according to a Skew-t multivariate distribution. In the development of this work we come across one of the main difficulties encountered in the process of estimation and inference of multidimensional IRT models which is the lack of identifiabilitie and, with the intent to demystify and expand our knowledge on a subject still little explored in the literature of the IRT, we present a bibliographical study on this subject both in the context of classical and Bayesian inference. In order to identify particular situations where the use of a skew normal distribution is more relevant to the estimation and inference of item parameters as well as other parameters related to the distribution of latent traits, some analyses on simulated data sets are developed. As results of these analyses, we can say that there is a modest improvement when information about a possible asymmetry in the distribution of latent traits is not ignored. Moreover, the results favored the selection of models that consider asymmetric distributions for latent traits, especially when models that enable the estimation of parameters of location and scale from this distribution are considered. Two main contributions that we consider of pratical interest are: analysis and interpretations of tests using unidimensional and multidimensional IRT models that consider both simetric and skewed distributions for the vectors of latent traits and a function written in R and C++ language program that is made disponible for the estimation of models treated in this work.
8

Modelos multidimensionais da TRI com distribuições assimétricas para os traços latentes / Multidimensional IRT models with skew distributions for latent traits.

Matos, Gilberto da Silva 15 December 2008 (has links)
A falta de alternativas ao modelo normal uni/multivariado já é um problema superado pois atualmente é possível encontrar inúmeros trabalhos que introduzem e desenvolvem generalizações da distribuição normal com relação `a assimetria, curtose e/ou multimodalidade (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006)). No contexto dos modelos unidimensionais da Teoria da Resposta ao Item (TRI), Bazán (2005) percebeu esta realidade e introduziu uma classe denominada PANA (Probito Assimétrico - Normal Assimétrica) a qual permite modelar possíveis comportamentos assimétricos de um modelo (uma probabilidade) de resposta ao item bem como a especificação de uma distribuição normal assimétrica para os traços latentes (unidimensionais) a qual é utilizada no processo de estimação. Motivado pela necessidade de melhor representar os fenômenos da área psicométrica (Heinen, 1996, p. 105) e da atual disponibilidade de distribuições elípticas assimétricas cujas propriedades são tão convenientes quanto aquelas devidas `a distribuição normal, a proposta do presente trabalho é apresentar uma extensão do modelo K-dimensional de 3 Parâmetros Probito (Kd3PP) com vetores de traços latentes normalmente distribuídos para o caso t-Assimétrico, gerando, assim, o que denominamos modelo Kd3PP-tA. Nossa proposta, portanto, pode ser considerada como uma extensão do trabalho desenvolvido por Bazán (2005) tanto no sentido de extender a distribuição unidimensional assimétrica dos traços latentes para o caso multidimensional quanto no que conscerne em considerar o achatamento (curtose) da distribuição. Nossa proposta também pode ser vista como uma extensão do trabalho de Béguin e Glas (2001) no sentido de desenvolver o método de estimação bayesiana dos modelos multidimensionais da TRI via DAGS (Dados Aumentados com Amostrador de Gibbs) para o caso em que os vetores de traços latentes comportam-se segundo uma distribuição multivariada t-Assimétrica. No desenvolvimento deste trabalho nos deparamos com uma das principais dificuldades encontradas no processo de estimação e inferência dos modelos multidimensionais da TRI que é a falta de identificabilidade e, com a intenção de ampliar e desmistificar nossos conhecimentos sobre um assunto ainda pouco explorado na literatura da TRI, apresentamos um estudo bibliográfico sobre este tema tanto sob o contexto da inferência clássica quanto bayesiana. Com o intuito de identificar situações particulares em que o uso de uma distribuição normal assimétrica para os traços latentes seja de maior relevância para a estimação e inferência dos parâmetros de item, bem como outros parâmetros relacionados à distribuição dos traços latentes, algumas análises sobre conjuntos de dados simulados são desenvolvidas. Como conclusão destas análises, podemos dizer que há uma melhora superficial quando a informação sobre uma possível assimetria na distribuição dos traços latentes não é ignorada. Além disso, os resultados favoreceram a seleção dos modelos que consideram distribuições assimétricas para os traços latentes, principalmente quando são considerados os modelos que possibilitam a estimação dos parâmetros de localização e escala da distribuição dos vetores de traços latentes. Duas principais contribuições que consideramos de ordem prática, são: a análise e a interpretação de testes através da estimação de modelos uni e multidimensionais da TRI que consideram tanto distribuições simétricas quanto assimétricas para os vetores de traços latentes e a disponibilização de uma função escrita em códigos R e C++ para a estimação dos modelos apresentados e desenvolvidos no presente trabalho. / The lack of alternatives to the univariate or multivariate normal model has been already solved because actually it has been possible to find several works that introduce and develop generalizations of the normal distribution in relation to the asymmetry, kurtosis and/or multimodality (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006). In the context of unidimensional models of the Item Response Theory (IRT), Baz´an (2005) observed this fact and introduced a class called PANA (Probito Assimétrico - Normal Assimétrica) which allows to take account for asymmetry in the shape of an item response model (probability) and the specification of a skew normal distribution for unidimensional latent traits which is used in the estimation process. Motivated by the need to better represent the phenomenon of psychometric area (Heinen, 1996, p. 105) and the current availability of skew elliptical distributions whose properties are as convenient as those due to normal distribution, the proposal of this work is to provide an extension of multidimensional 3 Parameters Probit model (Kd3PP) where latent traits vectors are normally distributed for the case of Skew-t distribution (Sahu et al., 2003), generating therefore what we call Kd3PP-St model. Our proposal, therefore, can be regarded as an extension of the work of Bazán (2005) in two ways: the first is extending the unidimensional skew normal distribution of latent traits to the multidimensional case and second in the sense to consider the flattening (kurtosis) of this distribution. Our proposal can also be seen as an extension of the work of B´eguin e Glas (2001) in the sense that we develop the Bayesian estimation method of the 3 parameters multidimensional item response model by DAGS (Augmentated Data with Gibbs sampling) for the case where the latent trait vectors behave according to a Skew-t multivariate distribution. In the development of this work we come across one of the main difficulties encountered in the process of estimation and inference of multidimensional IRT models which is the lack of identifiabilitie and, with the intent to demystify and expand our knowledge on a subject still little explored in the literature of the IRT, we present a bibliographical study on this subject both in the context of classical and Bayesian inference. In order to identify particular situations where the use of a skew normal distribution is more relevant to the estimation and inference of item parameters as well as other parameters related to the distribution of latent traits, some analyses on simulated data sets are developed. As results of these analyses, we can say that there is a modest improvement when information about a possible asymmetry in the distribution of latent traits is not ignored. Moreover, the results favored the selection of models that consider asymmetric distributions for latent traits, especially when models that enable the estimation of parameters of location and scale from this distribution are considered. Two main contributions that we consider of pratical interest are: analysis and interpretations of tests using unidimensional and multidimensional IRT models that consider both simetric and skewed distributions for the vectors of latent traits and a function written in R and C++ language program that is made disponible for the estimation of models treated in this work.

Page generated in 0.0514 seconds