• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Detection and removal of wind turbine ice : Method review and a CFD simulation test

Bravo Jimenez, Ismael January 2018 (has links)
Nowadays, the energy sector is facing a huge demand that needs to be covered. Wind energy is one of the most promising energy resources as it is free from pollution, clean and probably will arise as one of the main energy sources to prevent global warming from happening. Almost 10% of the global energy demand is coming from renewable resources. By 2050 this percentage is expected to grow to 60%. Therefore, efforts on wind turbine technology (i.e. reliability, design…) need to be coped with this growth. Currently, large wind energy projects are usually carried out in higher altitudes and cold climates. This is because almost all of the cold climates worldwide offer profitable wind power resources and great wind energy potential. Operating with wind turbines in cold climates bring interesting advantages as a result of higher air density and consequently stronger winds (wind power is around 10% higher in the Nordic regions). Not only benefits can be obtained but extreme conditions force to follow harsh conditions. Low temperatures and ice accretion present an important issue to solve as can cause several problems in fatigue loads, the balance of the rotor and aerodynamics, safety risks, turbine performance, among others. As wind energy is growing steadily on icy climates is crucial that wind turbines can be managed efficiently and harmlessly during the time they operate. The collected data for the ice detection, de-icing and anti-icing systems parts was obtained through the company Arvato Bertelsmann and is also based on scientific papers. In addition, computer simulations were performed, involving the creation of a wind tunnel under certain conditions in order to be able to carry out the simulations (1st at 0ºC, 2nd at -10ºC) with the turbine blades rotating in cold regions as a standard operation. In this project, Computational Fluids Dynamics (CFD) simulation on a 5MW wind turbine prototype with ice accretion on the blades to study how CL and CD can change, also different measures of ice detection, deicing and anti-icing systems for avoiding ice accumulation will be discussed. Simulation results showed a logical correlation as expected, increasing the drag force about 5.7% and lowering the lift force 17,5% thus worsening the turbine's efficiency.
12

The effect on noise emission from wind turbines due to ice accretion on rotor blades

Arbinge, Peter January 2012 (has links)
Swedish EPA (Naturvårdsverket) noise level guide-lines suggest that equivalent A-weighted sound pressure levels (SPL) must not exceed 40 dBA at residents. Thus, in the planning of new wind farms and their location it is crucial to estimate the disturbance it may cause to nearby residents. Wind turbine noise emission levels are guaranteed by the wind turbine manufacturer only under ice-free conditions. Thus, ice accretion on wind turbine may lead to increased wind turbine noise resulting in noise levels at nearby residents to exceed 40 dBA SPL. The purpose of the project is to evaluate the effect on wind turbine noise emission due to ice accretion. This, by trying to quantify the ice accretion on rotor blades and correlate it to any change in noise emission. A literature study shows that the rotor blades are to be considered the primary noise source. Hence, ice accretion on rotor blades are assumed to be the main influence on noise character. A field study is performed in two parts; as a long term measurement based on the method out-lined by IEC 61400-11 and as a short term measurement in strict accordance with IEC 61400-11. These aim to obtain noise emission levels for the case of icing conditions and ice-free conditions (reference conditions) as well as background noise levels. An analysis is performed, which sets out to correlate ice measurements with wind turbine performance and noise emission. Data reduction procedures are performed according to IEC 61400-11.The apparent sound power levels are evaluated. This is performed for the case of icing conditions as well as for the case of ice-free onditions. A statistical evaluation of icing event is carried out. The results show that ice accretion on wind turbine (rotor blades) may lead to drastically higher noise emission levels. The sound power levels show an average increase of 10.6 dB at 8 m/s. However, this can occur at all wind speeds from 6 m/s to 10 m/s. Higher levels of noise, (55 to 65 dBA SPL) may be caused by very small amounts of ice accretion. Occurrences of higher levels of noise, in the range of 50 to 65 dBA SPL, are not common. Noise levels exceeding 50 dBA SPL are to expected 10.3 % of the time during the winter or 3 % of the time during one year. Correlation between measured ice accumulation and noise level is weak apart from large amounts of ice. This due to statistical noise. Taking into account the noise level guide-lines of 40 dBA SPL at residents, as is recommended by Swedish EPA (Naturvårdsverket), the increased levels of windturbine noise under icing conditions may force the power production to a halt.
13

CFD Simulation of Vortex-Induced Vibration of Ice Accreted Stay Cable Using ANSYS-Fluent

Sharma, Dwaipayan January 2020 (has links)
No description available.
14

A STUDY ON THE PHYSICS OF ICE ACCRETION IN A TURBOFAN ENGINE ENVIRONMENT

Oliver, Michael James 19 August 2013 (has links)
No description available.

Page generated in 0.1005 seconds