Spelling suggestions: "subject:"ece calving"" "subject:"tece calving""
1 |
Controls on the calving rate of north west Svalbard glaciers from satellite remote sensingMansell, Damien Trevor January 2011 (has links)
No description available.
|
2 |
Environmental controls on calving in grounded tidewater glaciersCook, Susan Jennifer January 2012 (has links)
No description available.
|
3 |
New Understanding of Iceberg Calving, Mass Loss, and Glacier Dynamics in Greenland Through Analysis of Glacial EarthquakesOlsen, Kira January 2020 (has links)
I apply a suite of seismic techniques to investigate iceberg calving at large glaciers around Greenland. Iceberg calving accounts for up to half of the Greenland Ice Sheet's annual mass loss, which makes understanding the physics of the calving process vital to gaining a clear picture of current behavior and future evolution of the Greenland Ice Sheet. However, the varied and complex modes of calving behavior at individual glaciers, paired with the challenges to data collection presented by an actively calving glacier, mean that much remains unknown about the dynamics of calving at marine-terminating glaciers. Seismic data offer a unique opportunity to study this active phenomenon, by allowing remote observation of calving events and quantification of the forces active during calving.
Using seismic data collected during the most productive three years of buoyancy-driven calving on record, I estimate the forces active during iceberg calving at 13 glaciers around Greenland. My waveform-modeling results highlight the large number of buoyancy-driven calving events currently occurring at Jakobshavn Isbrae and other glaciers in west Greenland. I demonstrate that a glacier's grounded state exerts control on the production or cessation of rotational calving events and investigate the dynamics of calving at individual glaciers. I pair seismic results with terminus imagery to identify the location of individual calving events within calving sequences that occur over days to weeks at a single glacier terminus.
By applying a new cross-correlation technique to seismic data collected within 100 km of three of Greenland's largest glaciers, I identify the occurrence of buoyancy-driven calving events with iceberg volumes up to two orders of magnitude smaller than previously observed. These small calving events frequently occur within ~30 minutes of a larger calving event. In between calving sequences, a glacier terminus changes little, suggesting that the majority of ice lost from marine-terminating glaciers occurs through these sequences. I estimate that these small events may contribute up to 30% more to dynamic mass loss than previously thought (up to 15 Gt/yr). I find no evidence of the cliff failure predicted by the marine-ice-cliff-instability hypothesis, in which catastrophic failure occurs when an ice cliff reaches a theoretical maximum-height limit, despite the three glaciers I investigate in detail having some of the tallest ice cliffs in the world.
I use independent constraints on iceberg size from high-quality terminus imagery to present the first demonstration of an empirical relationship between glacial-earthquake magnitude and iceberg size. I investigate this relationship further by considering additional metrics of glacial-earthquake magnitude, and find advantages to using maximum force, rather than the more commonly employed mass-distance product Mcsf, as a measure of glacial-earthquake size.
Through a detailed investigation into the character of the glacial-earthquake source, I identify key characteristics of the source function that generates the glacial-earthquake signal. I use experiments on both synthetic and observed waveforms to demonstrate that more-accurate estimates of glacial-earthquake size can be retrieved using source models constructed using a representation of the force history that is more sophisticated than that captured by the simple boxcar model. I confirm the presence of a correlation between iceberg volume and glacial-earthquake size, which moves us closer to having the ability to use remotely recorded seismic signals to quantify mass loss at Greenland glaciers. This work presents testable hypotheses for future model development.
|
4 |
Glacial Earthquakes and Glacier Seismicity in GreenlandVeitch, Stephen Alexander January 2016 (has links)
The loss of ice from the Greenland ice sheet is an important contributor to current and future sea level rise occurring due to ongoing changes in the global climate. A significant portion of this ice mass loss comes through the calving of large icebergs at Greenland’s many marine-terminating outlet glaciers. However, the dynamics of calving at these glaciers is currently not well understood, complicating projections of future behaviour of these glaciers and mass loss from the Greenland ice sheet. The use of seismological tools has shown promise as a means of both monitoring and better understanding the dynamics of the calving process at these glaciers. On the global scale, data from the long-standing global seismic network has recorded the occurrence of glacial earthquakes, large long period earthquakes that occur during large calving events at near-grounded outlet glaciers. The occurrence and source parameters of these earthquakes provide insight into the link between glacier calving and climatic and oceanic forcings, as well as information on the large-scale glacier-dynamic conditions under which these major calving events occur. On the more local scale, a deployment of seismometers around an individual glacier has provided insights on the seismic environment of a calving glacier, as well as the more immediate, short-term external drivers of calving events. We consider both local and global seismic data in order to further understanding of the dynamics of the calving process at Greenland outlet glaciers, and find that glacial earthquake production is indicative of a near-grounded terminus at the source glacier. We find that the locations derived from these events are accurate and are sensitive to changes in the calving-front position of the source glacier, and that the active-force azimuths are representative of the orientation of the glacier at the time of calving. We also find that these glaciers are the source of abundant small icequakes, which are strongly tied to the occurrence of major calving events. The small icequakes that occur at Helheim glacier are modulated by semi-diurnal variations in tide height, and potentially control the timing of major calving events by progressively damaging the glacier tongue.
|
Page generated in 0.0819 seconds