• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations into the Regional and Local Timescale Variations of Subglacial Drainage Networks

Hiester, Justin 04 June 2013 (has links)
Subglacial water plays an important role in the regulation of an ice sheet's mass balance. It may be the dominant control on the velocities of ice streams and outlet glaciers on scales of months to millennia. Recent satellite observations of ice surface elevation changes have given researchers new insights into how subglacial water is stored and transported. Localized uplift and settling of the ice surface implies that lakes exist beneath the ice sheet that are being filled and drained on relatively short time scales. %At the base of an ice sheet water can be transported through a variety of drainage networks or stored in subglacial lakes. Here, a numerical investigation of the mechanisms of transport and storage of subglacial water and the associated time scales is presented. Experiments are carried out using a finite element model of coupled ice and water flow. The first experiment seeks to understand the relationship between the depth of a basal depression and the area over which the feature affects basal water flow. It is found that as the perturbation to a topographic depression's depth is increased, water is rerouted in response to the perturbation. Additionally it is found that the relationship between perturbation depth and the extent upstream to which its effects reach is nonlinear. The second experiment examines how the aspect ratio of bed features (prolate, oblate, or equidimensional) influences basal water flow. It is found that the systems that develop and their interactions are mediated by both the topography and the feedbacks taken into account by the coupling of the systems in the model. Features oriented parallel to ice and water flow are associated with distributed fan systems that develop branches which migrate laterally across the domain and interact with one another on monthly and yearly timescales. Laterally oriented features develop laterally extensive ponds. As the ratio of longitudinal to lateral dimension of the topography is increased, a combination of these two water distributions is seen.
2

Provenance Study of Reedy Glacier and West Antarctic Ice Stream Tills

Kramer, Katie L. 10 October 2008 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In January 2007, 26 samples of till from 6 different moraines along the Reedy Glacier, East Antarctica were collected with the goal of differentiating between these samples and till collected from the base of the Whillans, Kamb, and Bindschadler Ice Streams of West Antarctica. The ability to differentiate between East and West Antarctic ice will allow us to constrain ice flow into the central Ross Sea during the Last Glacial Maximum (LGM), which has implications for more accurate reconstructions of the Ross Ice Sheet and its behavior. Moraines sampled from the head of Reedy Glacier give insight to the geology beneath the EAIS, and may be representative of what the glacier is eroding from its bed. Samples along the trunk of the glacier capture representative rock types eroded along the length of Reedy Glacier. At each moraine 3 replicate sub-sites were selected for collection to represent the diversity of material within each moraine. Comparisons are based on the composition of pebbles, particle size distributions, and sand petrography. Analysis of the pebble fraction shows that each sub-site contains similar rock types, however, the concentration of each rock type varies as much as 25-35%. Similar variation is also seen within the sub-site sand fraction. Both the pebble and sand fraction reflect the mapped bedrock geology. The dominant pebble types are coarse-grained felsic and intermediate igneous rocks, as well as quartzite. Similarly felsic igneous grains, quartzite, quartz, and feldspar characterize the sand fraction. Particle size analysis shows that v Reedy Glacier till averages 85% sand. The subglacial West Antarctic samples contain approximately 30% sand, and equal amounts of silt and clay, approximately 35% each. An observation of the sand fraction from beneath the West Antarctic Ice Streams shows composition similar to tills from Reedy Glacier. However, tills from the base of the West Antarctic Ice Streams contain up to 75% polymict grains, and in contrast, these grains are absent in the tills from Reedy Glacier. These sand-sized polymict grains dominate material from the base of Whillans and Bindschadler Ice Streams, whereas material from the base of Kamb Ice Stream contains grains of felsic igneous, quartz, feldspar, and few to no polymict grains. In addition to the polymict grains, the sand fraction in the ice stream cores contains trace fragments of sedimentary, and volcanic rocks, both of which are absent from the Reedy Glacier sand fraction. However, polymict grains are believed to represent a process occurring beneath the ice sheet, rather than indicate provenance. It is difficult to differentiate between the two tills, as both contain high concentrations of felsic-intermediate igneous lithics, quartz, and feldspar. The central Ross Sea contains sediment similar in rock type and mineralogy as seen within sediments from both Reedy Glacier, and the base of the ice streams of West Antarctica.

Page generated in 0.1208 seconds