Spelling suggestions: "subject:"identificação cela dde canais"" "subject:"identificação cela dee canais""
1 |
High-order statistical methods for blind channel identification and source detection with applications to wireless communicationsFernandes, Carlos Estevão Rolim 30 May 2008 (has links)
FERNANDES, C. E. R. High-order statistical methods for blind channel identification and source detection with applications to wireless communications. 2008. 151 f. Tese (Doutorado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2008. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-04-01T18:38:00Z
No. of bitstreams: 1
2008_tese_cerfernandes.pdf: 1821153 bytes, checksum: 5c0a056817e62e60afcf7d7944ef2a4b (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-04-06T18:37:37Z (GMT) No. of bitstreams: 1
2008_tese_cerfernandes.pdf: 1821153 bytes, checksum: 5c0a056817e62e60afcf7d7944ef2a4b (MD5) / Made available in DSpace on 2016-04-06T18:37:37Z (GMT). No. of bitstreams: 1
2008_tese_cerfernandes.pdf: 1821153 bytes, checksum: 5c0a056817e62e60afcf7d7944ef2a4b (MD5)
Previous issue date: 2008-05-30 / Current telecommunications systems offer services that require very high transmission rates. The channel identification problem arises in this context with a major issue. The use of blind techniques have been of great interest in the search for a better balance between an appropriate binary rates and the quality of the retrieved information. Relying on special properties of cumulants of 4th order of the signals to the channel output, this thesis introduces new signal processing tools with applications in mobile radio communication systems. Exploring the symmetrical structure of the output cumulants, the problem of blind channel identification is approached from a multilinear model tensor 4th order cumulant based on a decomposition into parallel factors (PARAFAC). If SISO, the components of the new model have a tensor Hankel structure. In the case of MIMO channels without memory, the redundancy of tensor factors is explored in the estimation of the coefficients of the channel. In this context, new blind channel identification algorithms developed in this thesis are based on a least squares optimization problem single step (SS-LS). The proposed methods fully exploit the multilinear structure of the cumulant tensor and their symmetries and redundancies, thus avoiding any form of preprocessing. Indeed, the SS-LS approach induces a solution based on a single minimization procedure without intermediate steps, contrary to what happens in most of the existing literature methods. Using only the cumulants of order 4 and exploring the concept of Virtual Arrangement, this is also the problem of location of sources, in a multiuser environment. An original Contribution is to increase the number of virtual sensors based on a particular decomposition of cumulants tensioner, thereby improving the resolution of the arrangement whose structure is typically obtained when using order statistics 6. It is considered also the estimation physical of a MIMO channel of communication with muti-routes. Via a fully blind approach, the multipath channel is first treated as a convolutional model and a new technique is proposed to estimate its coefficients. This non-parametric technique generalizes the methods previously proposed for SISO and MIMO cases (out of memory). Making use of a tensor formalism to represent the multipath MIMO channel, its physical parameters may be obtained using a combined technique of ALS-MUSIC type, based on a subspace algorithm. Finally, it will be considered the problem of determining the order of FIR channels, particularly in the case of MISO systems. A complete procedure is introduced to the detection and estimation of selective MISO communication channels in frequency. The new algorithm, based on a deflation approach successively detects each signal source, determines the order of their individual broadcast channel and estimates the associated coefficients. / Os sistemas de telecomunicações atuais oferecem servios que demandam taxas de transmissão muito elevadas. O problema da identificação de canal aparece nesse contexto com um problema da maior importância. O uso de técnicas cegas tem sido de grande interesse na busca por um melhor compromisso entre uma taxas binária adequada e a qualidade da informação recuperada. Apoiando-se em propriedades especiais dos cumulantes de 4a ordem dos sinais à saída do canal, esta tese introduz novas ferramentas de processamento de sinais com aplicações em sistemas de comunicação rádio-móveis. Explorando a estrutura simétrica dos cumulantes de saída, o problema da identificação cega de canais é abordado a partir de um modelo multilinear do tensor de cumulantes 4a ordem, baseado em uma decomposição em fatores paralelos (Parafac). No caso SISO, os componentes do novo modelo tensorial apresentam uma estrutura Hankel. No caso de canais MIMO sem memória, a redundância dos fatores tensoriais é explorada na estimação dos coeficientes dos canal. Neste contexto, novos algoritmos de identificação cega de canais são desenvolvidos nesta tese com base em um problema de otimização de mínimos quadrados de passo único (SS-LS). Os métodos propostos exploram plenamente a estrutura multilinear do tensor de cumulantes bem como suas simetrias e redundâncias, evitando assim qualquer forma de pré-processamento. Com efeito, a abordagem SS-LS induz uma solução baseada em um único procedimento de minimização, sem etapas intermediárias, contrariamente ao que ocorre na maior parte dos métodos existentes na literatura. Utilizando apenas os cumulantes de ordem 4 e explorando o conceito de Arranjo Virtual, trata-se também o problema da localização de fontes, num contexto multiusuário. Uma contribução original consiste em aumentar o número de sensores virtuais com base em uma decomposição particular do tensor de cumulantes, melhorando assim a resolução do arranjo, cuja estrutura é tipicamente obtida quando se usa estatísticas de ordem 6. Considera-se ainda a estimação dos parâmetros físicos de um canal de comunicação MIMO com muti-percursos. Através de uma abordagem completamente cega, o canal multi-percurso é primeiramente tratado como um modelo convolutivo e uma nova técnica é proposta para estimar seus coeficientes. Esta técnica não-paramétrica generaliza os métodos previamente propostos para os casos SISO e MIMO (sem memória). Fazendo uso de um formalismo tensorial para representar o canal de multi-percursos MIMO, seus parâmetros físicos podem ser obtidos através de uma técnica combinada de tipo ALS-MUSIC, baseada em um algoritmo de subespaço. Por fim, será considerado o problema da determinação de ordem de canais FIR, particularmente no caso de sistemas MISO. Um procedimento completo é introduzido para a detecção e estimação de canais de comunicação MISO seletivos em freqüência. O novo algoritmo, baseado em uma abordagem de deflação, detecta sucessivamente cada fonte de sinal, determina a ordem de seu canal de transmissão individual e estima os coeficientes associados. / Les systémes de télécommunications modernes exigent des débits de transmission trés élevés. Dans ce cadre, le probléme d’identification de canaux est un enjeu majeur. L’utilisation de techniques aveugles est d’un grand intérét pour avoir le meilleur compromis entre un taux binaire adéquat et la qualité de l’information récupérée. En utilisant les propriétés des cumulants d’ordre 4 des signaux de sortie du canal, cette thése introduit de nouvelles méthodes de traitement du signal tensoriel avec des applications pour les systémes de communication radio-mobiles. En utilisant la structure symétrique des cumulants de sortie, nous traitons le probléme de l’identification aveugle de canaux en introduisant un mod`ele multilinéaire pour le tenseur des cumulants d’ordre 4, basé sur une décomposition de type Parafac. Dans le cas SISO, les composantes du modéle tensoriel ont une structure de Hankel. Dans le cas de canaux MIMO instantanés, la redondance des facteurs tensoriels est exploitée pour l’estimation des coefficients du canal. Dans ce contexte, nous développons des algorithmes d’identification aveugle basés sur une minimisation de type moindres carrés à pas unique (SS-LS). Les méthodes proposées exploitent la structure multilinéaire du tenseur de cumulants aussi bien que les relations de symétrie et de redondance, ce qui permet d’éviter toute sorte de traitement au préalable. En effet, l’approche SS-LS induit une solution basée sur une seule et unique procédure d’optimisation, sans les étapes intermédiaires requises par la majorité des méthodes existant dans la littérature. En exploitant seulement les cumulants d’ordre 4 et le concept de réseau virtuel, nous abordons aussi le probléme de la localisation de sources dans le cadre d’un réseau d’antennes multiutilisateur. Une contribution originale consiste à augmenter le nombre de capteurs virtuels en exploitant un arrangement particulier du tenseur de cumulants, de maniére à améliorer la résolution du réseau, dont la structure équivaut à celle qui est typiquement issue de l’utilisation des statistiques d’ordre 6. Nous traitons par ailleurs le probléme de l’estimation des paramétres physiques d’un canal de communication de type MIMO à trajets multiples. Dans un premier temps, nous consid´erons le canal à trajets multiples comme un modèle MIMO convolutif et proposons une nouvelle technique d’estimation des coefficients. Cette technique non-paramétrique généralise les mèthodes proposées dans les chapitres précédents pour les cas SISO et MIMO instantané. En représentant le canal multi-trajet à l’aide d’un formalisme tensoriel, les paramètres physiques sont obtenus en utilisant une technique combinée de type ALS-MUSIC, basée sur un algorithme de sous-espaces. Enfin, nous considérons le problème de la d´etermination d’ordre de canaux de type RIF, dans le contexte des systèmes MISO. Nous introduisons une procédure complète qui combine la détection des signaux avec l’estimation des canaux de communication MISO sélectifs en fréquence. Ce nouvel algorithme, basé sur une technique de déflation, est capable de détecter successivement les sources, de déterminer l’ordre de chaque canal de transmission et d’estimer les coefficients associ´es.
|
Page generated in 0.1077 seconds