Spelling suggestions: "subject:"dentification algorithms"" "subject:"didentification algorithms""
1 |
Qualitative adaptive identification for powertrain systems : powertrain dynamic modelling and adaptive identification algorithms with identifiability analysis for real-time monitoring and detectability assessment of physical and semi-physical system parametersSouflas, Ioannis January 2015 (has links)
A complete chain of analysis and synthesis system identification tools for detectability assessment and adaptive identification of parameters with physical interpretation that can be found commonly in control-oriented powertrain models is presented. This research is motivated from the fact that future powertrain control and monitoring systems will depend increasingly on physically oriented system models to reduce the complexity of existing control strategies and open the road to new environmentally friendly technologies. At the outset of this study a physics-based control-oriented dynamic model of a complete transient engine testing facility, consisting of a single cylinder engine, an alternating current dynamometer and a coupling shaft unit, is developed to investigate the functional relationships of the inputs, outputs and parameters of the system. Having understood these, algorithms for identifiability analysis and adaptive identification of parameters with physical interpretation are proposed. The efficacy of the recommended algorithms is illustrated with three novel practical applications. These are, the development of an on-line health monitoring system for engine dynamometer coupling shafts based on recursive estimation of shaft’s physical parameters, the sensitivity analysis and adaptive identification of engine friction parameters, and the non-linear recursive parameter estimation with parameter estimability analysis of physical and semi-physical cyclic engine torque model parameters. The findings of this research suggest that the combination of physics-based control oriented models with adaptive identification algorithms can lead to the development of component-based diagnosis and control strategies. Ultimately, this work contributes in the area of on-line fault diagnosis, fault tolerant and adaptive control for vehicular systems.
|
2 |
Qualitative Adaptive Identification for Powertrain Systems. Powertrain Dynamic Modelling and Adaptive Identification Algorithms with Identifiability Analysis for Real-Time Monitoring and Detectability Assessment of Physical and Semi-Physical System ParametersSouflas, Ioannis January 2015 (has links)
A complete chain of analysis and synthesis system identification tools for detectability
assessment and adaptive identification of parameters with physical interpretation
that can be found commonly in control-oriented powertrain models is
presented. This research is motivated from the fact that future powertrain control
and monitoring systems will depend increasingly on physically oriented system
models to reduce the complexity of existing control strategies and open the
road to new environmentally friendly technologies. At the outset of this study
a physics-based control-oriented dynamic model of a complete transient engine
testing facility, consisting of a single cylinder engine, an alternating current dynamometer
and a coupling shaft unit, is developed to investigate the functional
relationships of the inputs, outputs and parameters of the system. Having understood
these, algorithms for identifiability analysis and adaptive identification of parameters with physical interpretation are proposed. The efficacy of the recommended
algorithms is illustrated with three novel practical applications. These are,
the development of an on-line health monitoring system for engine dynamometer
coupling shafts based on recursive estimation of shaft’s physical parameters, the
sensitivity analysis and adaptive identification of engine friction parameters, and
the non-linear recursive parameter estimation with parameter estimability analysis
of physical and semi-physical cyclic engine torque model parameters. The
findings of this research suggest that the combination of physics-based control oriented
models with adaptive identification algorithms can lead to the development
of component-based diagnosis and control strategies. Ultimately, this work
contributes in the area of on-line fault diagnosis, fault tolerant and adaptive control
for vehicular systems.
|
3 |
Contributions à l'identification paramétrique de modèles à temps continu : extensions de la méthode à erreur de sortie, développement d'une approche spécifique aux systèmes à boucles imbriquées / Contributions in parametric identification of continuous-time models : extensions to the output error method, development of a new specific approach for cascaded loops systemsBaysse, Arnaud 21 October 2010 (has links)
Les travaux de recherche présentés dans ce mémoire concernent des contributions à l'identification paramétrique de modèles à temps continu. La première contribution est le développement d'une méthode à erreur de sortie appliquée à des modèles linéaires, en boucle ouverte et en boucle fermée. Les algorithmes sont présentés pour des modèles à temps continu, en utilisant une approche hors ligne ou récursive. La méthode est étendue à l'identification de systèmes linéaires comprenant un retard pur. La méthode développée est appliquée à différents systèmes et comparée aux méthodes d'identification existantes. La deuxième contribution est le développement d'une nouvelle approche d'identification de systèmes à boucles imbriquées. Cette approche est développée pour l'identification de systèmes électromécaniques. Elle se base sur l'utilisation d'un modèle d'identification paramétrique générique d'entraînements électromécaniques en boucle fermée, sur la connaissance du profil des lois de mouvement appliquées appelées excitations, et sur l'analyse temporelle de signaux internes et leurs corrélations avec les paramètres à identifier. L'approche est développée dans le cadre de l'identification d'entraînements à courant continu et synchrone. L'application de cette approche est effectuée au travers de simulations et de tests expérimentaux. Les résultats sont comparés à des méthodes d'identification classiques. / The research works presented in this thesis are about contributions in continuous time model parametric identication. The rst work is the development of an output error method applied on linear models, in open and closed loop. The algorithms are presented for continuous time models, using in-line or oine approaches. The method is extended to the case of the linear systems containing pure time delay. The developed method is applied to several systems and compared to the best existing methods. The second contribution is the development of a new identication approach for cascaded loop systems. This approach is developed for identifying electromechanical systems. It is based on the use of a generic parametric model of electromechanical drives in closed loop, on the knowledge of the movement laws applied and called excitations, and on the analyse of the time internal signals and their correlations with the parameters to identify. This approach is developed for identifying direct current and synchronous drives. The approach is applied with simulations and experimental tests. The obtained results are compared to best identifying known methods.
|
4 |
FIR System Identification Using Higher Order Cumulants -A Generalized ApproachSrinivas, L 07 1900 (has links)
The thesis presents algorithms based on a linear algebraic solution for the identification of the parameters of the FIR system using only higher order statistics when only the output of the system corrupted by additive Gaussian noise is observed.
All the traditional parametric methods of estimating the parameters of the system have been based on the 2nd order statistics of the output of the system. These methods suffer from the deficiency that they do not preserve the phase response of the system and hence cannot identify non-minimum phase systems. To circumvent this problem, higher order statistics which preserve the phase characteristics of a process and hence are able to identify a non-minimum phase system and also are insensitive to additive Gaussian noise have been used in recent years.
Existing algorithms for the identification of the FIR parameters based on the higher order cumulants use the autocorrelation sequence as well and give erroneous results in the presence of additive colored Gaussian noise. This problem can be overcome by obtaining algorithms which do not utilize the 2nd order statistics.
An existing relationship between the 2nd order and any Ith order cumulants is generalized to a relationship between any two arbitrary k, Ith order cumulants. This new relationship is used to obtain new algorithms for FIR system identification which use only cumulants of order > 2 and with no other restriction than the Gaussian nature of the additive noise sequence. Simulation studies are presented to demonstrate the failure of the existing algorithms when the imposed constraints on the 2nd order statistics of the additive noise are violated while the proposed algorithms perform very well and give consistent results.
Recently, a new algebraic approach for parameter estimation method denoted the Linear Combination of Slices (LCS) method was proposed and was based on expressing the FIR parameters as a linear combination of the cumulant slices. The rank deficient cumulant matrix S formed in the LCS method can be expressed as a product of matrices which have a certain structure. The orthogonality property of the subspace orthogonal to S and the range space of S has been exploited to obtain a new class of algorithms for the estimation of the parameters of a FIR system. Numerical simulation studies have been carried out to demonstrate the good behaviour of the proposed algorithms.
Analytical expressions for the covariance of the estimates of the FIR parameters of the different algorithms presented in the thesis have been obtained and numerical comparison has been done for specific cases.
Numerical examples to demonstrate the application of the proposed algorithms for channel equalization in data communication and as an initial solution to the cumulant matching nonlinear optimization methods have been presented.
|
5 |
Identification of multivariate stochastic functional models with applications in damage detection of structures / Αναγνώριση πολυμεταβλητών στοχαστικών συναρτησιακών μοντέλων με εφαρμογή στην διάγνωση βλαβών σε κατασκευέςΧίος, Ιωάννης 01 October 2012 (has links)
This thesis addresses the identification of stochastic systems operating under different conditions, based on data records corresponding to a sample of such operating conditions. This topic is very important, as systems operating under different, though constant conditions at different occasions (time intervals) are often encountered in practice. Typical examples include mechanical, aerospace or civil structures that operate under different environmental conditions (temperature or humidity, for instance) on different occasions (period
of day, and so on). Such different operating conditions may affect the system characteristics, and therefore its dynamics.
Given a set of data records corresponding to distinct operating conditions, it is most desirable to establish a single global model capable of describing the system throughout the entire range of admissible operating conditions. In the present thesis this problem is treated via a novel stochastic Functional Pooling (FP) identification framework which introduces functional dependencies (in terms of the operating condition) in the postulated model structure.
The FP framework offers significant advantages over other methods providing global models by interpolating a set of conventional models (one for each operating condition), as it:
(i) treats data records corresponding to different operating conditions simultaneously, and fully takes cross-dependencies into account thus yielding models with optimal statistical accuracy,
(ii) uses a highly parsimonious representation which provides precise information about the system dynamics at any specified operating condition without resorting to customary interpolation schemes,
(iii) allows for the determination of modeling uncertainty at any specified operating condition via formal interval estimates.
To date, all research efforts on the FP framework have concentrated in identifying univariate (single excitation-single response) stochastic models. The present thesis aims at (i) properly formulating and extending the FP framework to the case of multivariate stochastic systems operating under multiple operating conditions, and (ii) introducing an approach based on multivariate FP modeling and statistical hypothesis testing for damage detection under different operating conditions.
The case of multivariate modeling is more challenging compared to its univariate counterpart as the couplings between the corresponding signals lead to more complicated model structures, whereas their nontrivial parametrization raises issues on model identifiability. The main focus of this thesis is on models of the Functionally Pooled Vector AutoRegressive with eXogenous excitation (FP-VARX) form, and
Vector AutoRegressive Moving Average (FP-VARMA) form. These models may be thought of as generalizations of their conventional VARX/VARMA counterparts with the important distinction being that the model parameters are explicit functions of the operating condition.
Initially, the identification of FP-VARX models is addressed. Least Squares (LS) and conditional Maximum Likelihood (ML) type estimators are formulated, and their consistency along with their asymptotic
normality is established. Conditions ensuring FP-VARX identifiability are postulated, whereas model structure specification is
based upon proper forms of information criteria. The performance characteristics
of the identification approach are assessed via Monte Carlo studies, which also demonstrate the effectiveness of the
proposed framework and its advantages over conventional identification approaches based on VARX modeling.
Subsequently, an experimental study aiming at identifying the temperature effects on the dynamics of a smart composite beam via conventional model and novel global model approaches is presented. The conventional model approaches are based on non-parametric and parametric VARX representations, whereas the global model approaches are based on parametric Constant Coefficient Pooled (CCP) and Functionally Pooled (FP) VARX representations. Although the obtained conventional model and global representations are in rough overall agreement, the latter simultaneously use all available data records and offer improved accuracy and compactness. The CCP-VARX representations provide an ``averaged'' description of the structural dynamics over temperature, whereas their FP-VARX counterparts allow for the explicit, analytical modeling of temperature dependence, and attain improved estimation accuracy.
In addition, the identification of FP-VARMA models is addressed. Two-Stage Least Squares (2SLS) and conditional ML type estimators are formulated, and their consistency and asymptotic normality are established. Furthermore, an effective method for 2SLS model estimation featuring a simplified procedure for obtaining residuals in the first stage is introduced. Conditions ensuring FP-VARMA model identifiability are also postulated. Model structure specification is based upon a novel two-step approach using Canonical Correlation Analysis (CCA) and proper forms of information
criteria, thus avoiding the use of exhaustive search procedures. The performance characteristics of the identification approach are assessed via a Monte Carlo
study, which also demonstrates the effectiveness of the proposed framework over conventional identification approaches based on VARMA modeling.
An approach based on the novel FP models and statistical hypothesis testing for damage detection under different operating conditions is also proposed. It includes two versions: the first version is based upon the obtained modal parameters, whereas the second version is based upon the discrete-time model parameters. In an effort to streamline damage detection, procedures for compressing the information carried by the modal or the discrete-time model parameters via Principal Component Analysis (PCA) are also employed. The effectiveness of the proposed damage detection approach is assessed on a smart composite beam with hundreds of experiments corresponding to different temperatures. In its present form, the approach relies upon response (output-only) vibration data, although excitation-response data may be also
used. FP-VAR modeling is used identify the temperature dependent structural dynamics, whereas a new scheme for model structure selection is introduced which avoids the use of exhaustive search procedures. The experimental results verify the capability of both versions of the approach to infer reliable damage detection under different temperatures. Furthermore, alternative
methods attempting removal of the temperature effects from the damage sensitive features are also employed, allowing for a detailed and concise comparison.
Finally, some special topics on global VARX modeling are treated. The focus is on the identification of the Pooled (P) and Constant Coefficient Pooled (CCP) VARX model classes. Although both model classes are of limited scope, they are useful tools for global model identification. In analogy to the FP-VARX/VARMA model case, the LS and conditional ML type estimators are studied for both model classes, whereas conditions ensuring model identifiability are also postulated. The
relationships interconnecting the P-VARX and CCP-VARX models to the FP-VARX models in terms of compactness and achievable accuracy are studied, whereas their association to the conventional VARX models is also addressed. The effectiveness and performance
characteristics of the novel global modeling approaches are finally assessed via Monte Carlo studies. / Η παρούσα διατριβή πραγματεύεται την αναγνώριση πολυμεταβλητών στοχαστικών συστημάτων που παρουσιάζουν πολλαπλές συνθήκες λειτουργίας, βασιζόμενοι σε δεδομένα που αντιστοιχούν σε ένα δείγμα ενδεικτικών συνθηκών λειτουργίας. Η σπουδαιότητα του προβλήματος είναι μεγάλη, καθώς στην πράξη συναντώνται πολύ συχνά συστήματα όπου οι επιμέρους συνθήκες λειτουργίας παραμένουν σταθερές ανά χρονικά διαστήματα. Τυπικά παραδείγματα περιλαμβάνουν μηχανολογικές, αεροναυτικές και δομικές κατασκευές που λειτουργούν κάτω από διαφορετικές συνθήκες (π.χ. θερμοκρασίας και/ή υγρασίας) σε διαφορετικές συνθήκες (π.χ. περίοδος της ημέρας). Οι διαφορετικές συνθήκες λειτουργίας ενδέχεται να επηρεάσουν ένα σύστημα και ως εκ τούτου τα δυναμικά χαρακτηριστικά του.
Λαμβάνοντας υπόψη ένα σύνολο δεδομένων που αντιστοιχούν σε διαφορετικές συνθήκες λειτουργίας, είναι επιθυμητή η εύρεση ενός "γενικευμένου" μοντέλου ικανού να περιγράψει το σύστημα σε όλο το φάσμα των αποδεκτών συνθηκών λειτουργίας. Στην παρούσα διατριβή το πρόβλημα αυτό αντιμετωπίζεται μέσω ενός καινοτόμου πλαισίου αναγνώρισης στοχαστικών μοντέλων Συναρτησιακής Σώρευσης (stochastic Functional Pooling Framework), το οποίο εισάγει συναρτησιακές εξαρτήσεις (αναφορικά με την κατάσταση λειτουργίας) στην δομή του μοντέλου. Το συγκεκριμένο πλαίσιο Συναρτησιακής Σώρευσης προσφέρει σημαντικά πλεονεκτήματα σε σχέση με άλλες μεθόδους εύρεσης γενικευμένων μοντέλων που χρησιμοποιούν μεθόδους παρεμβολής (interpolation) σε ένα σύνολο συμβατικών μοντέλων (ένα για κάθε συνθήκη λειτουργίας), όπως:
(i) Η ταυτόχρονη διαχείριση δεδομένων που αντιστοιχούν σε διαφορετικές συνθήκες λειτουργίας, καθώς και η διευθέτηση των αλληλοεξαρτήσεων μεταξύ δεδομένων που ανήκουν σε διαφορετικές συνθήκες λειτουργίας παρέχοντας με τον τρόπο αυτό μοντέλα με βέλτιστη στατιστική ακρίβεια,
(ii) η χρήση συμπτυγμένων μοντέλων τα οποία περιγράφουν με ακρίβεια τα δυναμικά χαρακτηριστικά του συστήματος σε κάθε κατάσταση λειτουργίας, αποφεύγοντας έτσι την χρήση συμβατικών μεθόδων παρεμβολής,
(iii) ο προσδιορισμός των αβεβαιοτήτων στη μοντελοποίηση κάθε κατάστασης λειτουργίας μέσω εκτίμησης κατάλληλων διαστημάτων εμπιστοσύνης.
Μέχρι στιγμής, η έρευνα πάνω στο πλαίσιο Συναρτησιακής Σώρευσης έχει επικεντρωθεί στα βαθμωτά στοχαστικά μοντέλα. Η παρούσα διατριβή σαν στόχο έχει (i) την κατάλληλη διαμόρφωση και επέκταση του πλαισίου Συναρτησιακής Σώρευσης για την περίπτωση πολυμεταβλητών στοχαστικών συστημάτων που λειτουργούν με πολλαπλές συνθήκες λειτουργίας , και (ii) την εισαγωγή μιας καινοτόμου μεθοδολογίας ανίχνευσης βλαβών για συστήματα που παρουσιάζουν πολλαπλές συνθήκες λειτουργίας βασιζόμενη σε πολυμεταβλητά μοντέλα Συναρτησιακής Σώρευσης και στον στατιστικό έλεγχο υποθέσεων.
Η περίπτωση των πολυμεταβλητών μοντέλων παρουσιάζει τεχνικές δυσκολίες που δεν συναντώνται στα βαθμωτά μοντέλα, καθώς η δομή των μοντέλων είναι πιο περίπλοκη ενώ η παραμετροποίησή τους είναι μη-τετριμμένη θέτοντας έτσι ζητήματα αναγνωρισιμότητας (model identifiability). Η παρούσα διατριβή εστιάζει σε Συναρτησιακά Σωρευμένα Διανυσματικά μοντέλα ΑυτοΠαλινδρόμησης με εΞωγενή είσοδο (Functionally Pooled Vector AutoRegressive with eXogenous excitation; FP-VARX), και σε Διανυσματικά μοντέλα ΑυτοΠαλινδρόμησης με Κινητό Μέσο Όρο (Functionally Pooled AutoRegressive with Moving Average; FP-VARMA). Τα μοντέλα αυτά μπορεί να θεωρηθούν ως γενικεύσεις των συμβατικών μοντέλων VARX/VARMA με την σημαντική διαφοροποίηση ότι οι παράμετροι του μοντέλου είναι συναρτήσεις της συνθήκης λειτουργίας.
Το πρώτο κεφάλαιο της διατριβής επικεντρώνεται στην αναγνώριση μοντέλων FP-VARX. Αναπτύσσονται εκτιμήτριες βασισμένες στις μεθόδους των Ελαχίστων Τετραγώνων (Least Squares; LS) και της Μέγιστης Πιθανοφάνειας (Maximum Likelihood; ML), ενώ στη συνέχεια μελετώνται η συνέπεια (consistency) και η ασυμπτωτική κατανομή (asymptotic distribution)τους. Επιπλέον, καθορίζονται συνθήκες που εξασφαλίζουν την αναγνωρισιμότητα (identifiability) των FP-VARX μοντέλων, ενώ ο προσδιορισμός της δομής τους βασίζεται σε κατάλληλα τροποποιημένα κριτήρια πληροφορίας (information criteria). Η αποτίμηση της μοντελοποίησης με FP-VARX, καθώς επίσης και η αποτελεσματικότητά τους έναντι των συμβατικών μοντέλων VARX εξακριβώνεται μέσω προσομοιώσεων Monte Carlo.
Στο δεύτερο κεφάλαιο διερευνάται η αναγνώριση των θερμοκρασιακών επιρροών στα δυναμικά χαρακτηριστικά μιας ευφυούς δοκού από σύνθετο υλικό. Το πρόβλημα μελετάται χρησιμοποιώντας συμβατικά μοντέλα καθώς και "γενικευμένα" μοντέλα. Η συμβατική μοντελοποίηση περιλαμβάνει μη-παραμετρικές παραστάσεις που βασίζονται στην μέθοδο Welch (ανάλυση στο πεδίο συχνοτήτων), καθώς και παραμετρικές παραστάσεις βασισμένες στα μοντέλα VARX (ανάλυση στο πεδίο χρόνου). H "γενικευμένη" μοντελοποίηση περιλαμβάνει παραστάσεις Σώρευσης με Σταθερές Παραμέτρους (Constant Coefficient Pooled VARX; CCP-VARX), καθώς και VARX παραστάσεις Συναρτησιακής Σώρευσης (Functionally Pooled VARX; FP-VARX). Η ανάλυση υποδεικνύει ότι τα χαρακτηριστικά των "γενικευμένων" και των συμβατικών μοντέλων βρίσκονται σε γενική συμφωνία μεταξύ τους. Ωστόσο, τα "γενικευμένα" μοντέλα περιγράφουν τα δυναμικά χαρακτηριστικά του συστήματος με μικρότερο αριθμό παραμέτρων, γεγονός που προσδίδει μεγαλύτερη ακρίβεια στην εκτίμησή τους. Το μοντέλο CCP-VARX τείνει να σταθμίσει τα δυναμικά χαρακτηριστικά του συστήματος σε κάποιον "μέσο όρο" με σχετική ακρίβεια. Απεναντίας το μοντέλο FP-VARX υπερέχει σε ακρίβεια, καθώς επιδεικνύει μια εξομαλυμένη καθοριστική εξάρτηση των δυναμικών χαρακτηριστικών του συστήματος με την θερμοκρασία, γεγονός που είναι συμβατό με την φυσική του προβλήματος.
Το τρίτο κεφάλαιο επικεντρώνεται στην αναγνώριση μοντέλων FP-VARMA. Αναπτύσσονται εκτιμήτριες βασισμένες στις μεθόδους των Ελαχίστων Τετραγώνων Δύο Σταδίων (Two Stage Least Squares; 2SLS) και της Μέγιστης Πιθανοφάνειας (Maximum Likelihood; ML), ενώ στην συνέχεια μελετώνται η συνέπεια και η ασυμπτωτική κατανομή τους. Επιπλέον, εισάγεται μια νέα μέθοδος για την εκτίμηση 2SLS που απλοποιεί σημαντικά την διαδικασία εξαγωγής υπολοίπων (residuals) από το πρώτο στάδιο. Επίσης, καθορίζονται οι συνθήκες που εξασφαλίζουν αναγνωρισιμότητα στα μοντέλα FP-VARMA. Ο προσδιορισμός της δομής των μοντέλων FP-VARMA πραγματοποιείται χάρη σε μια μεθοδολογία δύο σταδίων που βασίζεται στην Ανάλυση Κανονικοποιημένων Συσχετίσεων (Canonical Correlation Analysis; CCA) και κριτηρίων πληροφορίας, αποφεύγοντας έτσι την εκτεταμένη χρήση αλγορίθμων αναζήτησης. Η αποτίμηση της μοντελοποίησης με FP-VARMA, καθώς επίσης και η αποτελεσματικότητά τους έναντι των συμβατικών VARMA εξακριβώνεται μέσω προσομοιώσεων Monte Carlo.
Το τέταρτο κεφάλαιο πραγματεύεται την ανίχνευση βλαβών σε συστήματα που παρουσιάζουν πολλαπλές συνθήκες λειτουργίας. Προτείνεται μια νέα μεθοδολογία που βασίζεται σε καινοτόμα μοντέλα Συναρτησιακής Σώρευσης και στον στατιστικό έλεγχο υποθέσεων. Παρουσιάζονται δυο εκδόσεις της μεθοδολογίας: η πρώτη βασίζεται στα μορφικά χαρακτηριστικά του μοντέλου ενώ η δεύτερη στις παραμέτρους του μοντέλου. Επιπλέον, χρησιμοποιούνται μέθοδοι συμπίεσης της πληροφορίας που περιέχουν τα μορφικά χαρακτηριστικά ή οι παράμετροι του μοντέλου μέσω της Ανάλυσης Κύριων Συνιστωσών (Principal Component Analysis; PCA) σε μια προσπάθεια απλοποίησης της διαδικασίας ανίχνευσης βλαβών. Η αποτελεσματικότητα της μεθοδολογίας επαληθεύεται πειραματικά σε μια "ευφυή" δοκό από σύνθετο υλικό, η οποία ταλαντώνεται σε διαφορετικές θερμοκρασίες. Στην παρούσα μορφή της η μεθοδολογία χρησιμοποιεί δεδομένα απόκρισης ταλάντωσης, ωστόσο δεδομένα διέγερσης-απόκρισης μπορούν να χρησιμοποιηθούν εφόσον κριθεί σκόπιμο. Η εξάρτηση των δυναμικών χαρακτηριστικών της δοκού με την θερμοκρασία περιγράφεται με τη χρήση μοντέλων FP-VAR, ενώ εισάγεται μια νέα μέθοδος καθορισμού της δομής του μοντέλου που αποφεύγει την χρήση αλγορίθμων αναζήτησης. Πλήθος πειραμάτων που καλύπτουν ένα ευρύ θερμοκρασιακό πεδίο, καθώς και συγκρίσεις με άλλες μεθοδολογίες ανίχνευσης βλαβών, πιστοποιούν την ικανότητα της προτεινόμενης μεθοδολογίας να διαγνώσει την κατάσταση της δοκού σε διάφορες θερμοκρασίες.
Το πέμπτο κεφάλαιο ασχολείται με ειδικά θέματα μοντελοποίησης των "γενικευμένων" VARX . Ιδιαίτερη προσοχή δίνεται στην μελέτη Σωρευμένων VARX (P-VARX) και CCP-VARX μοντέλων. Σε αντιστοιχία με τα μοντέλα FP, αναπτύσσονται εκτιμήτριες LS και ML, ενώ στην συνέχεια μελετώνται οι ιδιότητές τους. Επιπλέον, καθορίζονται οι συνθήκες που εξασφαλίζουν την αναγνωρισιμότητα των μοντέλων P-VARX και CCP-VARX. Μελετώνται επίσης και οι σχέσεις που συνδέουν τις δομές των μοντέλων P-VARX και CCP-VARX με τα FP-VARX ως προς την παραμετροποίησή τους και την ακρίβεια που επιτυγχάνουν. Επιπλέον, μελετάται και η σχέση των παραπάνω μοντέλων με τα συμβατικά VARX. Η αποτίμηση των γενικευμένων μοντέλων VARX αναφορικά με το πλήθος των εκτιμώμενων παραμέτρων και την ακρίβεια που επιτυγχάνουν εξακριβώνεται μέσω προσομοιώσεων Monte Carlo.
|
Page generated in 0.1349 seconds