Spelling suggestions: "subject:"dentification anda systems"" "subject:"dentification ando systems""
1 |
A reliability study of the RFID technologyNg, Ling Siew. January 2006 (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, December 2006. / Thesis Advisor(s): Ha, Tri T. ; Su, Weilian. "December 2006." Description based on title screen as viewed on March 12, 2008. Includes bibliographical references (p. 55-56). Also available in print.
|
2 |
Minimising human annotation for scalable person re-identificationWang, Hanxiao January 2017 (has links)
Among the diverse tasks performed by an intelligent distributed multi-camera surveillance system, person re-identification (re-id) is one of the most essential. Re-id refers to associating an individual or a group of people across non-overlapping cameras at different times and locations, and forms the foundation of a variety of applications ranging from security and forensic search to quotidian retail and health care. Though attracted rapidly increasing academic interests over the past decade, it still remains a non-trivial and unsolved problem for launching a practical reid system in real-world environments, due to the ambiguous and noisy feature of surveillance data and the potentially dramatic visual appearance changes caused by uncontrolled variations in human poses and divergent viewing conditions across distributed camera views. To mitigate such visual ambiguity and appearance variations, most existing re-id approaches rely on constructing fully supervised machine learning models with extensively labelled training datasets which is unscalable for practical applications in the real-world. Particularly, human annotators must exhaustively search over a vast quantity of offline collected data, manually label cross-view matched images of a large population between every possible camera pair. Nonetheless, having the prohibitively expensive human efforts dissipated, a trained re-id model is often not easily generalisable and transferable, due to the elastic and dynamic operating conditions of a surveillance system. With such motivations, this thesis proposes several scalable re-id approaches with significantly reduced human supervision, readily applied to practical applications. More specifically, this thesis has developed and investigated four new approaches for reducing human labelling effort in real-world re-id as follows: Chapter 3 The first approach is affinity mining from unlabelled data. Different from most existing supervised approaches, this work aims to model the discriminative information for reid without exploiting human annotations, but from the vast amount of unlabelled person image data, thus applicable to both semi-supervised and unsupervised re-id. It is non-trivial since the human annotated identity matching correspondence is often the key to discriminative re-id modelling. In this chapter, an alternative strategy is explored by specifically mining two types of affinity relationships among unlabelled data: (1) inter-view data affinity and (2) intra-view data affinity. In particular, with such affinity information encoded as constraints, a Regularised Kernel Subspace Learning model is developed to explicitly reduce inter-view appearance variations and meanwhile enhance intra-view appearance disparity for more discriminative re-id matching. Consequently, annotation costs can be immensely alleviated and a scalable re-id model is readily to be leveraged to plenty of unlabelled data which is inexpensive to collect. Chapter 4 The second approach is saliency discovery from unlabelled data. This chapter continues to investigate the problem of what can be learned in unlabelled images without identity labels annotated by human. Other than affinity mining as proposed by Chapter 3, a different solution is proposed. That is, to discover localised visual appearance saliency of person appearances. Intuitively, salient and atypical appearances of human are able to uniquely and representatively describe and identify an individual, whilst also often robust to view changes and detection variances. Motivated by this, an unsupervised Generative Topic Saliency model is proposed to jointly perform foreground extraction, saliency detection, as well as discriminative re-id matching. This approach completely avoids the exhaustive annotation effort for model training, and thus better scales to real-world applications. Moreover, its automatically discovered re-id saliency representations are shown to be semantically interpretable, suitable for generating useful visual analysis for deployable user-oriented software tools. Chapter 5 The third approach is incremental learning from actively labelled data. Since learning from unlabelled data alone yields less discriminative matching results, and in some cases there will be limited human labelling resources available for re-id modelling, this chapter thus investigate the problem of how to maximise a model's discriminative capability with minimised labelling efforts. The challenges are to (1) automatically select the most representative data from a vast number of noisy/ambiguous unlabelled data in order to maximise model discrimination capacity; and (2) incrementally update the model parameters to accelerate machine responses and reduce human waiting time. To that end, this thesis proposes a regression based re-id model, characterised by its very fast and efficient incremental model updates. Furthermore, an effective active data sampling algorithm with three novel joint exploration-exploitation criteria is designed, to make automatic data selection feasible with notably reduced human labelling costs. Such an approach ensures annotations to be spent only on very few data samples which are most critical to model's generalisation capability, instead of being exhausted by blindly labelling many noisy and redundant training samples. Chapter 6 The last technical area of this thesis is human-in-the-loop learning from relevance feedback. Whilst former chapters mainly investigate techniques to reduce human supervision for model training, this chapter motivates a novel research area to further minimise human efforts spent in the re-id deployment stage. In real-world applications where camera network and potential gallery size increases dramatically, even the state-of-the-art re-id models generate much inferior re-id performances and human involvements at deployment stage is inevitable. To minimise such human efforts and maximise re-id performance, this thesis explores an alternative approach to re-id by formulating a hybrid human-computer learning paradigm with humans in the model matching loop. Specifically, a Human Verification Incremental Learning model is formulated which does not require any pre-labelled training data, therefore scalable to new camera pairs; Moreover, the proposed model learns cumulatively from human feedback to provide an instant improvement to re-id ranking of each probe on-the-fly, thus scalable to large gallery sizes. It has been demonstrated that the proposed re-id model achieves significantly superior re-id results whilst only consumes much less human supervision effort. For facilitating a holistic understanding about this thesis, the main studies are summarised and framed into a graphical abstract.
|
3 |
Identification of stochastic continuous-time systems : algorithms, irregular sampling and Cramér-Rao bounds /Larsson, Erik, January 2004 (has links)
Diss. Uppsala : Univ., 2004.
|
4 |
Métrica baseada em projeção de modelos para detecção de danos em estruturas / Metric based on models projection for damage detection in structuresGenari, Helói Francisco Gentil, 1985- 20 August 2018 (has links)
Orientador: Eurípedes Guilherme de Oliveira Nóbrega / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-20T08:19:57Z (GMT). No. of bitstreams: 1
Genari_HeloiFranciscoGentil_M.pdf: 1362304 bytes, checksum: c4c7788d0595b23a9e9f97011fa6ed8f (MD5)
Previous issue date: 2012 / Resumo: Para cumprir requisitos de segurança, aumentar a vida útil de estruturas e reduzir os custos de manutenção, métodos de detecção de danos e de monitoramento da integridade de estruturas (SHM) têm recebido grande atenção da comunidade científica nas últimas décadas. Neste contexto, várias técnicas diferentes para detecção de danos foram propostas, mas algoritmos eficientes e práticos são ainda temas muito pesquisados. Neste trabalho, estudam-se a métrica cepstral e a métrica por subespaços para a detecção de danos. Essas métricas calculam a distância entre dois modelos autorregressivos (AR). A distância entre os modelos AR, derivados a partir das séries temporais dos sinais de vibrações das estruturas com e sem danos utilizando identificação por subespaços, deve ser correlacionada com a informação do dano, incluindo sua severidade e localização. Assim, as distâncias calculadas utilizando-se as métricas são consideradas indicadores de danos. Para validar os dois indicadores, dois experimentos foram realizados. O primeiro consistiu em três vigas similares de alumínio, uma íntegra e duas contendo falhas simuladas que, juntamente com duas massas de 2.5g e 8.5g, simularam quatro danos diferentes. No segundo experimento, foi utilizada uma placa de alumínio retangular e, com o auxílio de massas de 2.5g, 8.5g e 20g, foram simulados cinco danos com diferentes severidades e localizações. Os resultados dos experimentos indicaram que o cálculo das distâncias entre os modelos AR são eficientes para detecção, análise de severidade e localização de danos / Abstract: To satisfy security requirements, extend life cycle of structures and reduce maintenance costs, damage detection techniques and structural health monitoring (SHM) have received great attention from the scientific community in the last decades. In this context, several different techniques for damage detection have been proposed, but efficient and practical algorithms are yet a major research theme. Cepstral metric and subspace metric for damage detection are studied in this work. These metrics compute the distance between two auto-regressive (AR) models, derived from times series of vibration signals from structures with and without damage, and it should be correlated with information of the damage, including damage location and severity. Thus, the distances calculated using these metrics are considered damage indicators. To validate both indicators, two experiments were performed. The first one consisted of three similar beams, a healthy one and two with simulated damages, which, together with two masses of 2.5g e 8.5g, simulated four different damages. In the second experiment, it was used an rectangular aluminum plate with aid of three masses of 2.5g, 8.5g and 20g to simulate five damages with different severities and locations. The results of experiments indicated that the calculation of distances between AR models are effective for the detection, analysis of severity and location of damages / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
|
5 |
Algorithm for Detection of Raising Eyebrows and Jaw Clenching Artifacts in EEG Signals Using Neurosky Mindwave HeadsetVélez, Luis, Kemper, Guillermo 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / The present work proposes an algorithm to detect and identify the artifact signals produced by the concrete gestural actions of jaw clench and eyebrows raising in the electroencephalography (EEG) signal. Artifacts are signals that manifest in the EEG signal but do not come from the brain but from other sources such as flickering, electrical noise, muscle movements, breathing, and heartbeat. The proposed algorithm makes use of concepts and knowledge in the field of signal processing, such as signal energy, zero crossings, and block processing, to correctly classify the aforementioned artifact signals. The algorithm showed a 90% detection accuracy when evaluated in independent ten-second registers in which the gestural events of interest were induced, then the samples were processed, and the detection was performed. The detection and identification of these devices can be used as commands in a brain–computer interface (BCI) of various applications, such as games, control systems of some type of hardware of special benefit for disabled people, such as a chair wheel, a robot or mechanical arm, a computer pointer control interface, an Internet of things (IoT) control or some communication system. / Revisión por pares
|
6 |
Využití biologických metod v kriminalistice / Use of Biological Methods in CriminologyMüllerová, Nikola January 2014 (has links)
Criminology is a science dealing with the protection of citizens and state from infringement. Criminology uses mostly biological or genetic methods for crime detection. Forensic traces which are collected by forensic experts on the scene are the key items of those methods. Forensic genetics is among the most important forensic subdisciplines. Forensic genetics uses DNA analysis for identification. The main aims of this study are description and importance of biological, anthropological and genetic methods in criminology, different ways of forensic identification, division and collection of forensic traces, characterization and course of forensic DNA analysis and DNA profiling. Key words Criminology, forensic methods, forensic identification, forensic trace, forensic biology, anthropology and genetics, information systems, forensic DNA analysis, DNA profile.
|
Page generated in 0.1497 seconds