• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and evaluation of a multiplex assay to measure bovine IgG1 and IgG2 using microspheres and flow cytometry

Kempegowda, Rekha January 1900 (has links)
Master of Science / Department of Diagnostic Medicine and Pathobiology / Melinda J. Wilkerson / Failure of passive transfer (FPT) is one of the main reasons for increased mortality rate in newborn calves and diagnosis is dependent on determination of serum IgG concentrations (diagnosis is based on < 1 g/dL of total IgG). Several qualitative assays are available, but the reference method, single radial immunodiffusion assay (SRID), albeit quantitative measures only one subclass at a time. We set out to develop a competitive multiplex microsphere flow cytometry assay to measure bovine IgG1 and IgG2 concentrations in 30 serum samples acquired from newborn Holstein calves prior to and 24 hours after ingestion of colostrum and to compare the values with SRID. A triplex bead assay was created by mixing three distinct sets of Quantum plex carboxylated fluorescent microspheres that were coated with purified bovine IgG1, IgG2 or albumin using a two step chemical reaction. The triplex protein coated beads were reacted with a cocktail of sheep anti-bovine IgG1 and IgG2. Evaluation of analytical specificity demonstrated cross reactivity between anti-bovine IgG2 and IgG1 coated beads that precluded determination of IgG2 > 0.5 g/dL. Cross reactivity between anti-IgG1 and IgG2 coated beads was minimal and did not affect IgG1 concentrations between 0.15 to 1.2 g/dL. A competitive linear decrease in the fluorescence intensity was observed in the triplex assay when 2-fold dilutions spanning a concentration range of 12 mg/dL – 100 mg/dL of either purified bovine IgG1 or IgG2 were included as a competitive inhibitor of the reaction. Precolostral serum samples from 29 calves were determined to be < 0.4 g/dL by SRID. Standard calibrants for the flow assay were prepared from two fold serial dilutions of purified bovine IgG (stock concentration 10 g/dL) using a precolostral calf serum pool as the diluent. The standard calibrants (IgG1 was 1.0- 0.16 g/dL and IgG2 was 3.4 – 0.22 g/dL) were used as the inhibitors in a triplex assay to develop a standard curve for unknown samples. Dilutions of bovine reference serum containing known amounts of IgG1 (1.2 – 0.15 g/dL) and IgG2 (1.6 – 0.2 g/dL) was used as positive control. The intra Intra-assay and inter-assay precision of the mutiplex assay was good (coefficient of variation < 10%). Since the IgG2 concentrations of post colostral samples were below detection limit, only IgG1 values were compared to the SRID. The agreement between triplex microsphere assay and SRID for IgG1 was poor with a mean bias of 0.743 g/dL towards triplex microsphere assay (95% confidence interval of 0.382 to 1.105 g/dL). Method comparison studies between total IgG determined by SRID and the gamma-globulin fraction determined by serum electrophoresis indicated that the SRID calculated higher values than the protein method (mean bias of -1.4 g/dL, 95% confidence interval was -1.8 to -1.05 g/dL). We hypothesized that the positive bias for the microsphere assay was explained in part by the use of dilution factors, use of standards that had a low analytical range, and erroneously high standards used in the SRID method.
2

Evaluation of Weaning Stress in Beef Calves

Landa, Chelsea E. 19 July 2011 (has links)
Conventional techniques within the beef cattle industry involve weaning the calf from the dam when the calf is about 205 days of age. Weaning induces a stress-response that is implicated in reducing the health and productivity of newly weaned calves. Our goal was to evaluate the impact of weaning on the stress immune responses of beef calves. To that end, we 1) evaluated novel methods to quantify physiological markers of stress, 2) compared immune function and growth of calves grazing legume versus grass forages, and 3) compared the effects of abrupt versus two-stage weaning on calves. In study 1, calf, yearling, and adult beef cattle were used to assess the accuracy and precision of handheld glucometers in quantifying bovine blood glucose concentration. Precision Xtra® and ReliOn® glucometers were used chute side to quantify blood glucose concentrations in cattle and were compared to an accepted plasma glucose analysis on the same samples for validation. The Precision Xtra® glucometer was more accurate and precise than the ReliOn® glucometer. In study 2, weaned heifers were used to compare the immunomodulatory effects of grazing alfalfa versus fescue over a 30 day grazing period. No differences were detected in the interferon gamma (IFNγ) production and weight gain between the heifers on alfalfa and fescue. In study 3, effects of two-stage (fenceline) and abrupt weaning were compared. Calf weights, immune cell function, antibody production, blood glucose concentrations, fecal cortisol concentrations, and gene expression (FAS, IL-4,IL-10, and IFNγ) were measured pre- and post-weaning. On the day after weaning, the abruptly weaned calves had higher blood glucose concentrations than fenceline weaned calves. Fecal cortisol concentration and gene expression of FAS and IL-4 increased in both groups after weaning, but no differences were detected between the weaning treatments. Gene expression of IL-10 and IFNγ did not change over time. No date, treatment or treatment*date effect was detected for total weight gain or IFNγ production within the non-stimulated and the mitogen-stimulated whole blood samples. / Master of Science
3

Mechanistic approaches towards understanding particle formation in biopharmaceutical formations : the role of sufactant type and level on protein conformational stability, as assessed by calorimetry, and on protein size stability as assessed by dynamic light scattering, micro flow imaging and HIAC

Vaidilaite-Pretorius, Agita January 2013 (has links)
Control and analysis of protein aggregation is an increasing challenge to biopharmaceutical research and development. Therefore it is important to understand the interactions, causes and analysis of particles in order to control protein aggregation to enable successful biopharmaceutical formulations. This work investigates the role of different non-ionic surfactants on protein conformational stability, as assessed by HSDSC, and on protein size stability as assessed by Dynamic Light Scattering (DLS), HIAC and MFI. BSA and IgG2 were used as model proteins. Thermal unfolding experiments indicated a very weak surfactant-immunoglobulin IgG2 interaction, compared to much stronger interactions for the BSA surfactant systems. The DLS results showed that BSA and IgG2 with different surfactants and concentration produced different levels of particle size growth. The heat treatment and aging of samples in the presence of Tween 20, Tween 80, Brij 35 and Pluronic F-68 surfactants led to an increase in the populations of larger particles for BSA samples, whereas IgG2 systems did not notably aggregate under storage conditions MFI was shown to be more sensitive than HIAC technique for measuring sub-visible particles in protein surfactant systems. Heat treatment and storage stress showed a significant effect on BSA and IgG2 protein sub-visible particle size stability. This work has demonstrated that both proteins with different Tween 20, Tween 80, Brij 35 and Pluronic F-68 concentrations, have different level of conformational and size stability. Also aging samples and heating stress bears the potential to generate particles, but this depends on surfactant type. Poor predictive correlations between the analytical methods were determined.
4

Mechanistic approaches towards understanding particle formation in biopharmaceutical formations. The role of sufactant type and level on protein conformational stability, as assessed by calorimetry, and on protein size stability as assessed by dynamic light scattering, micro flow imaging and HIAC

Vaidilaite-Pretorius, Agita January 2013 (has links)
Control and analysis of protein aggregation is an increasing challenge to biopharmaceutical research and development. Therefore it is important to understand the interactions, causes and analysis of particles in order to control protein aggregation to enable successful biopharmaceutical formulations. This work investigates the role of different non-ionic surfactants on protein conformational stability, as assessed by HSDSC, and on protein size stability as assessed by Dynamic Light Scattering (DLS), HIAC and MFI. BSA and IgG2 were used as model proteins. Thermal unfolding experiments indicated a very weak surfactant-immunoglobulin IgG2 interaction, compared to much stronger interactions for the BSA surfactant systems. The DLS results showed that BSA and IgG2 with different surfactants and concentration produced different levels of particle size growth. The heat treatment and aging of samples in the presence of Tween 20, Tween 80, Brij 35 and Pluronic F-68 surfactants led to an increase in the populations of larger particles for BSA samples, whereas IgG2 systems did not notably aggregate under storage conditions MFI was shown to be more sensitive than HIAC technique for measuring sub-visible particles in protein surfactant systems. Heat treatment and storage stress showed a significant effect on BSA and IgG2 protein sub-visible particle size stability. This work has demonstrated that both proteins with different Tween 20, Tween 80, Brij 35 and Pluronic F-68 concentrations, have different level of conformational and size stability. Also aging samples and heating stress bears the potential to generate particles, but this depends on surfactant type. Poor predictive correlations between the analytical methods were determined.

Page generated in 0.0293 seconds