• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Laser Spark Ignition of Counter-flow Diffusion Flames: Effects of diluents and diffusive-thermal properties

Segura, Fidelio Sime 01 January 2012 (has links)
A pulsed Nd:YAG laser is used to study laser spark ignition of methane counter-flow diffusion flames with the use of helium and argon as diluents to achieve a wide range of variations in transport properties. The global strain rate and Damkohler number on successful ignition were investigated for the effects of Lewis number and transport properties, which are dependent on the diluent type and dilution level. A high-speed camera is used to record the ignition events and a software is used for pre-ignition flow field and mixing calculations. It is found that the role of effective Lewis number on the critical global strain rate, beyond which ignition is not possible, is qualitatively similar that on the extinction strain rate. With the same level of dilution, the inert diluent with smaller Lewis number yields larger critical global strain rate. The critical Damkohler number below which no ignition is possible is found to be within approximately 20% for all the fuel-inert gas mixtures studied. When successful ignition takes place, the ignition time increases as the level of dilution of argon is increased. The ignition time decreases with increasing level of helium dilution due to decreases in thermal diffusion time, which causes rapid cooling of the flammable layer during the ignition process. However, the critical strain for ignition with helium dilution rapidly decreases as the dilution level is increased. The experimental results show that with the increase of strain rate the time to steady flame decreases, and that with the increase of dilution level time for the flame to become steady increases. For the same level of dilution, the time for steady flame is observed to be longer for He-diluted flames than for Ar-diluted flames due to its thermal diffusivity being larger than that of Ar.
12

Methane And Dimethyl Ether Oxidation At Elevated Temperatures And Pressure

Zinner, Christopher 01 January 2008 (has links)
Autoignition and oxidation of two Methane (CH4) and Dimethyl Ether (CH3OCH3 or DME) mixtures in air were studied in shock tubes over a wide range of equivalence ratios at elevated temperatures and pressures. These experiments were conducted in the reflected shock region with pressures ranging from 0.8 to 35.7 atmospheres, temperatures ranging from 913 to 1650 K, and equivalence ratios of 2.0, 1.0, 0.5, and 0.3. Ignition delay times were obtained from shock-tube endwall pressure traces for fuel mixtures of CH4/CH3OCH3 in ratios of 80/20 percent volume and 60/40 percent volume, respectively. Close examination of the data revealed that energy release from the mixture is occurring in the time between the arrival of the incident shock wave and the ignition event. An adjustment scheme for temperature and pressure was devised to account for this energy release and its effect on the ignition of the mixture. Two separate ignition delay correlations were developed for these pressure- and temperature-adjusted data. These correlations estimate ignition delay from known temperature, pressure, and species mole fractions of methane, dimethyl ether, and air (0.21 O2 + 0.79 N2). The first correlation was developed for ignition delay occurring at temperatures greater than or equal to 1175 K and pressures ranging from 0.8 to 35.3 atm. The second correlation was developed for ignition delay occurring at temperatures less than or equal to 1175 K and pressures ranging from 18.5 to 40.0 atm. Overall good agreement was found to exist between the two correlations and the data of these experiments. Findings of these experiments also include that with pressures at or below ten atm, increased concentrations of dimethyl ether will consistently produce faster ignition times. At pressures greater than ten atmospheres it is possible for fuel rich mixtures with lower concentrations of dimethyl ether to give the fastest ignition times. This work represents the most thorough shock tube investigation for oxidation of methane with high concentration levels of dimethyl ether at gas turbine engine relevant temperatures and pressures. The findings of this study should serve as a validation for detailed chemical kinetics mechanisms.
13

Charakterisierung grundlegender Verbrennungseigenschaften von alternativen Treibstoffen und Treibstoffkomponenten

Richter, Sandra 08 May 2019 (has links)
Im Rahmen dieser Arbeit wurden die laminaren Flammengeschwindigkeit und die Zündverzugszeit für verschiedene alternative Treibstoffe und Treibstoffkomponenten experimentell bestimmt. Mit Farnesan, Alcohol-to-Jet SPK, Alcohol-to-Jet SKA und ReadiJet wurden vier verschiedene alternative Treibstoffe untersucht, die sich durch ihre Herkunft und in ihrer Zusammensetzung unterscheiden. Die Betrachtung einzelner Treibstoffkomponenten diente der Untersuchung inwieweit die Molekülstruktur einen Einfluss auf die Verbrennungseigenschaften hat. Dazu wurde aus jeder der vier Hauptstrukturgruppen (n-Alkane, iso-Alkane, Cycloalkane und Aromaten) jeweils ein Vertreter ausgewählt: n-Dodecan, Isooctan, n-Propylcyclohexan und n-Propylbenzol. Alle erhaltenen Ergebnisse worden mit Jet A-1, einem realen Treibstoff, verglichen. Aus den einzelnen Komponenten wurde auch ein aromatenfreies Surrogat hergestellt von welchem die Verbrennungseigenschaften ebenfalls experimentell untersucht wurden. Für das Surrogat wie auch seine Komponenten wurden die laminare Flammengeschwindigkeit und die Zündverzugszeit zusätzlich in einer Modellierung berechnet.:SYMBOLVERZEICHNIS ABKÜRZUNGSVERZEICHNIS 1 EINLEITUNG 2 GRUNDLAGEN ZUR VERBRENNUNG VON TREIBSTOFFEN 2.1 Laminare Flammen und Zündprozesse 2.2 Vorgänge bei der Oxidation von Kohlenwasserstoffen 2.3 Schadstoffbildung 3 UNTERSUCHTE TREIBSTOFFE 3.1 Jet A‐1 3.2 Alternative Treibstoffe 3.3 Treibstoffkomponenten 4 EXPERIMENTE 4.1 Einführung 4.2 Laminare Flammengeschwindigkeit 4.2.1 Einführung zur Messung der laminaren Flammengeschwindigkeit 4.2.2 Anwendung der Winkelmethode 4.2.3 Einfluss der Streckung auf laminare Flammen 4.2.4 Versuchsaufbau und Durchführung der Messung 4.2.5 Messergebnisse 4.3 Zündverzugszeit 4.3.1 Einführung zur Messung der Zündverzugszeit 4.3.2 Funktionsprinzip eines Stoßrohres 4.3.3 Versuchsaufbau und Durchführung der Messung 4.3.4 Messergebnisse 5 ZUSAMMENHANG ZWISCHEN STRUKTUR UND REAKTIVITÄT 5.1 Vergleich von n‐Dodecan und Isooctan 5.2 Vergleich von n‐Propylcyclohexan und n‐Propylbenzol 6 BERECHNUNG DER VERBRENNUNGSEIGENSCHAFTEN 6.1 DLR‐Mechanismus 6.2 Berechnung der laminaren Flammengeschwindigkeit 6.3 Berechnung der Zündverzugszeit 7 ZUSAMMENFASSUNG 8 FAZIT UND AUSBLICK 9 LITERATURVERZEICHNIS ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ANHANG
14

Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

Al-Noman, Saeed M. 06 1900 (has links)
Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found mainly between the fuel nozzle and the lifted flame edge. On the other hand, they were formed just prior to the flame edge for the non-autoignited lifted flames. The effect of fuel pyrolysis and partial oxidation were found to be important in explaining autoignited liftoff heights, especially in the Mild combustion regime. Flame structures of autoignited flames were investigated numerically for syngas (CO/H2) and methane fuels. The simulations of syngas fuel accounting for the differential diffusion have been performed by adopting several kinetic mechanisms to test the models ability in predicting the flame behaviors observed previously. The results agreed well with the observed nozzle-attached flame characteristics in case of non-autoignited flames. For autoignited lifted flames in high temperature regime, a unique autoignition behavior can be predicted having HO2 and H2O2 radicals in a broad region between the nozzle and stabilized lifted flame edge. Autoignition characteristics of laminar nonpremixed methane jet flames in high- temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

Page generated in 0.091 seconds