Spelling suggestions: "subject:"illumination normalization"" "subject:"illumination formalization""
1 |
Metody detekce a rozpoznání obličeje v obrazu / Face detection and recognition methodsZbranek, Miroslav January 2012 (has links)
The aim of this diploma thesis is to explore methods of face detection and recognition in the picture. The method for face detection and the method for face recognition will be chosen according to literature survey. Both methods will be implemented using the OpenCV library and a program language C/C++. The result of this project is creation of graphic interface which use programmed function for face detection and recognition from a picture and also a camcorder.
|
2 |
Análise de técnicas de normalização aplicadas ao reconhecimento facialAndrezza, Igor Lucena Peixoto 27 February 2015 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2016-02-18T10:52:41Z
No. of bitstreams: 1
arquivototal.pdf: 2258673 bytes, checksum: 21b44b2c7c089c792e07c8e4e298daf6 (MD5) / Made available in DSpace on 2016-02-18T10:52:41Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2258673 bytes, checksum: 21b44b2c7c089c792e07c8e4e298daf6 (MD5)
Previous issue date: 2015-02-27 / Biometrics offers a reliable authentication mechanism that identifies the users through their physical and behavioral characteristics. The problem of face recognition is not trivial because there are many factors that affect the face detection and recognition, as for example, lighting, face position, hair, beard, etc. This work proposes to analyze the effects of geometric and lighting normalization on face recognition techniques, aiming to adapt them to uncontrolled environments. The results show that the utilization of background information in the normalization process increases the face recognition error rates and this happens in many papers in the literature. The lighting and geometric normalization methods, when performed with precise points of the eyes centers, effectively help in face recognition. / A biometria oferece um mecanismo de autenticação confiável, que identifica os usuários por intermédio de suas características físicas e comportamentais. O problema do reconhecimento facial não é trivial, pois existem muitos fatores que influenciam na detecção e no reconhecimento de face como, por exemplo, a iluminação, a posição da face, cabelo, barba, etc. Este trabalho se propõe a analisar os efeitos de técnicas de normalização geométrica e de iluminação sobre métodos de reconhecimento de face, visando adequar esses métodos para ambientes não controlados. Os resultados mostram que a presença do plano de fundo no processo de normalização contribui para aumentar as taxas de erro no reconhecimento de face, fato que ocorre em vários trabalhos presentes na literatura. Nesta dissertação, verificou-se que a aplicação de técnicas de normalização de iluminação e normalização geométrica, quando realizadas com pontos precisos dos centros dos olhos, efetivamente ajuda na tarefa de reconhecimento facial.
|
3 |
Comparação entre métodos de normalização de iluminação utilizados para melhorar a taxa do reconhecimento facial / Comparison between illumination normalization methods used to improve the rate of facial recognitionMichelle Magalhães Mendonça 25 June 2008 (has links)
Condições distintas de iluminação numa imagem podem produzir representações desiguais do mesmo objeto, dificultando o processo de segmentação e reconhecimento de padrões, incluindo o reconhecimento facial. Devido a isso, a distribuição de iluminação numa imagem é considerada de grande importância, e novos algoritmos de normalização utilizando técnicas mais recentes ainda vêm sendo pesquisados. O objetivo dessa pesquisa foi o de avaliar os seguintes algoritmos de normalização da iluminação encontrados na literatura, que obtiveram bons resultado no reconhecimento de faces: LogAbout, variação do filtro homomórfico e método baseado em wavelets. O objetivo foi o de identificar o método de normalização da iluminação que resulta na melhor taxa de reconhecimento facial. Os algoritmos de reconhecimento utilizados foram: auto-faces, PCA (Principal Component Analyses) com rede neural LVQ (Learning Vector Quantization) e wavelets com rede neural MLP (Multilayer Perceptron). Como entrada, foram utilizadas imagens do banco Yale, que foram divididas em três subconjuntos. Os resultados mostraram que o método de normalização da iluminação que utiliza wavelet e LogAbout foram os que apresentaram melhoria significativa no reconhecimento facial. Os resultados também evidenciaram que, de uma maneira geral, com a utilização dos métodos de normalização da iluminação, obtém-se uma melhor taxa do reconhecimento facial, exceto para o método de normalização variação do filtro homomórfico com os algoritmos de reconhecimento facial auto-faces e wavelet com rede neural MLP. / Distinct lighting conditions in an image can produce unequal representations of the same object, compromising segmentation and pattern recognition processes, including facial recognition. Hence, the lighting distribution on an image is considered of great importance, and normalization algorithms using new techniques have still been researched. This research aims to evaluate the following illumination normalization algorithms found in literature: LogAbout, variation of homomorphic filter and wavelet based method. The main interest was to find out the illumination normalization method which improves the facial recognition rate. The algorithms used for face recognition were: eigenfaces, PCA (Principal Component Analysis) with LVQ neural network and wavelets with MLP (Multilayer Perceptron) neural network. Images from Yale Face Database B, divided into three subsets have been used. The results show that the wavelet and LogAbout technique provided the best facial recognition rate. Experiments showed that the illumination normalization methods, in general, improve the facial recognition rate, except for the variation of homomorphic filter technique with the algorithms: eigenfaces and PCA with LVQ.
|
4 |
Comparação entre métodos de normalização de iluminação utilizados para melhorar a taxa do reconhecimento facial / Comparison between illumination normalization methods used to improve the rate of facial recognitionMendonça, Michelle Magalhães 25 June 2008 (has links)
Condições distintas de iluminação numa imagem podem produzir representações desiguais do mesmo objeto, dificultando o processo de segmentação e reconhecimento de padrões, incluindo o reconhecimento facial. Devido a isso, a distribuição de iluminação numa imagem é considerada de grande importância, e novos algoritmos de normalização utilizando técnicas mais recentes ainda vêm sendo pesquisados. O objetivo dessa pesquisa foi o de avaliar os seguintes algoritmos de normalização da iluminação encontrados na literatura, que obtiveram bons resultado no reconhecimento de faces: LogAbout, variação do filtro homomórfico e método baseado em wavelets. O objetivo foi o de identificar o método de normalização da iluminação que resulta na melhor taxa de reconhecimento facial. Os algoritmos de reconhecimento utilizados foram: auto-faces, PCA (Principal Component Analyses) com rede neural LVQ (Learning Vector Quantization) e wavelets com rede neural MLP (Multilayer Perceptron). Como entrada, foram utilizadas imagens do banco Yale, que foram divididas em três subconjuntos. Os resultados mostraram que o método de normalização da iluminação que utiliza wavelet e LogAbout foram os que apresentaram melhoria significativa no reconhecimento facial. Os resultados também evidenciaram que, de uma maneira geral, com a utilização dos métodos de normalização da iluminação, obtém-se uma melhor taxa do reconhecimento facial, exceto para o método de normalização variação do filtro homomórfico com os algoritmos de reconhecimento facial auto-faces e wavelet com rede neural MLP. / Distinct lighting conditions in an image can produce unequal representations of the same object, compromising segmentation and pattern recognition processes, including facial recognition. Hence, the lighting distribution on an image is considered of great importance, and normalization algorithms using new techniques have still been researched. This research aims to evaluate the following illumination normalization algorithms found in literature: LogAbout, variation of homomorphic filter and wavelet based method. The main interest was to find out the illumination normalization method which improves the facial recognition rate. The algorithms used for face recognition were: eigenfaces, PCA (Principal Component Analysis) with LVQ neural network and wavelets with MLP (Multilayer Perceptron) neural network. Images from Yale Face Database B, divided into three subsets have been used. The results show that the wavelet and LogAbout technique provided the best facial recognition rate. Experiments showed that the illumination normalization methods, in general, improve the facial recognition rate, except for the variation of homomorphic filter technique with the algorithms: eigenfaces and PCA with LVQ.
|
5 |
Non-linear dimensionality reduction and sparse representation models for facial analysis / Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l’analyse du visageZhang, Yuyao 20 February 2014 (has links)
Les techniques d'analyse du visage nécessitent généralement une représentation pertinente des images, notamment en passant par des techniques de réduction de la dimension, intégrées dans des schémas plus globaux, et qui visent à capturer les caractéristiques discriminantes des signaux. Dans cette thèse, nous fournissons d'abord une vue générale sur l'état de l'art de ces modèles, puis nous appliquons une nouvelle méthode intégrant une approche non-linéaire, Kernel Similarity Principle Component Analysis (KS-PCA), aux Modèles Actifs d'Apparence (AAMs), pour modéliser l'apparence d'un visage dans des conditions d'illumination variables. L'algorithme proposé améliore notablement les résultats obtenus par l'utilisation d'une transformation PCA linéaire traditionnelle, que ce soit pour la capture des caractéristiques saillantes, produites par les variations d'illumination, ou pour la reconstruction des visages. Nous considérons aussi le problème de la classification automatiquement des poses des visages pour différentes vues et différentes illumination, avec occlusion et bruit. Basé sur les méthodes des représentations parcimonieuses, nous proposons deux cadres d'apprentissage de dictionnaire pour ce problème. Une première méthode vise la classification de poses à l'aide d'une représentation parcimonieuse active (Active Sparse Representation ASRC). En fait, un dictionnaire est construit grâce à un modèle linéaire, l'Incremental Principle Component Analysis (Incremental PCA), qui a tendance à diminuer la redondance intra-classe qui peut affecter la performance de la classification, tout en gardant la redondance inter-classes, qui elle, est critique pour les représentations parcimonieuses. La seconde approche proposée est un modèle des représentations parcimonieuses basé sur le Dictionary-Learning Sparse Representation (DLSR), qui cherche à intégrer la prise en compte du critère de la classification dans le processus d'apprentissage du dictionnaire. Nous faisons appel dans cette partie à l'algorithme K-SVD. Nos résultats expérimentaux montrent la performance de ces deux méthodes d'apprentissage de dictionnaire. Enfin, nous proposons un nouveau schéma pour l'apprentissage de dictionnaire adapté à la normalisation de l'illumination (Dictionary Learning for Illumination Normalization: DLIN). L'approche ici consiste à construire une paire de dictionnaires avec une représentation parcimonieuse. Ces dictionnaires sont construits respectivement à partir de visages illuminées normalement et irrégulièrement, puis optimisés de manière conjointe. Nous utilisons un modèle de mixture de Gaussiennes (GMM) pour augmenter la capacité à modéliser des données avec des distributions plus complexes. Les résultats expérimentaux démontrent l'efficacité de notre approche pour la normalisation d'illumination. / Face analysis techniques commonly require a proper representation of images by means of dimensionality reduction leading to embedded manifolds, which aims at capturing relevant characteristics of the signals. In this thesis, we first provide a comprehensive survey on the state of the art of embedded manifold models. Then, we introduce a novel non-linear embedding method, the Kernel Similarity Principal Component Analysis (KS-PCA), into Active Appearance Models, in order to model face appearances under variable illumination. The proposed algorithm successfully outperforms the traditional linear PCA transform to capture the salient features generated by different illuminations, and reconstruct the illuminated faces with high accuracy. We also consider the problem of automatically classifying human face poses from face views with varying illumination, as well as occlusion and noise. Based on the sparse representation methods, we propose two dictionary-learning frameworks for this pose classification problem. The first framework is the Adaptive Sparse Representation pose Classification (ASRC). It trains the dictionary via a linear model called Incremental Principal Component Analysis (Incremental PCA), tending to decrease the intra-class redundancy which may affect the classification performance, while keeping the extra-class redundancy which is critical for sparse representation. The other proposed work is the Dictionary-Learning Sparse Representation model (DLSR) that learns the dictionary with the aim of coinciding with the classification criterion. This training goal is achieved by the K-SVD algorithm. In a series of experiments, we show the performance of the two dictionary-learning methods which are respectively based on a linear transform and a sparse representation model. Besides, we propose a novel Dictionary Learning framework for Illumination Normalization (DL-IN). DL-IN based on sparse representation in terms of coupled dictionaries. The dictionary pairs are jointly optimized from normally illuminated and irregularly illuminated face image pairs. We further utilize a Gaussian Mixture Model (GMM) to enhance the framework's capability of modeling data under complex distribution. The GMM adapt each model to a part of the samples and then fuse them together. Experimental results demonstrate the effectiveness of the sparsity as a prior for patch-based illumination normalization for face images.
|
Page generated in 0.1695 seconds