• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 16
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Interactions between freeze lining and slag bath in ilmenite smelting

Zietsman, Johannes Hendrik. January 2004 (has links)
Thesis (Ph. D.)(Metallurgical Engineering)--University of Pretoria, 2004. / Title from opening screen (viewed March 14, 2005). Summaries in English and Afrikaans. Includes bibliographical references.
22

Process development for the production of beneficiated titania slag

Van Dyk, Jacobus Philippus January 2009 (has links)
Thesis (Ph.D.(Materials Science and Metallurgical Engineering))--University of Pretoria, 1999. / Summaries in Afrikaans and English. Includes bibliographical references.
23

Modelling and simulation of volumetric microwave heating : energy conversion and heat transfer

Mthombeni, Goodman 27 August 2012 (has links)
M.Tech. / Due to electric (E) and magnetic (H) fields that vary with space (r) and time (t) in the microwave cavity, and due to the inhomogeneous nature of the minerals, heating a mineral in a microwave oven gives an inherently non-uniform temperature distribution. The objective of the project is to introduce a mathematical model that will demonstrate the thermal interaction between ilmenite mineral (FeTiO3) and microwaves. The simulation presents the temperature distribution in the sample based on the conditions imposed on its boundaries. The field distribution in the cavity is simulated, and then the thermal analysis is performed using the lumped thermal capacity model. The temperature distribution in the sample is also simulated using the general heat conduction equation. Finite difference method is used two solve the two-dimensional unsteady heat conduction equation. The simulation of the field distribution in the cavity reveals that there are position of intense electric and magnetic field in the oven. This is demonstrated by experiment 6, where samples are heated at different positions in the oven for the same duration and different temperatures in the samples were measured. Electromagnetic wave propagation was also studied. It became apparent that the electric and magnetic field can not be treated independently from each other, because the changing electric field produces a changing magnetic field and the newly produced changing magnetic field produces a changing electric field, which is an electromagnetic wave. It is also proved that, considering the relationship given by Maxwell's equations, the electric and magnetic fields are not only space out of phase but they are also time out of phase, meaning that the one quantity is leading while the other is lagging. Based on the available mathematical evidence it was suggested to fit the conventional representation of the electromagnetic field, which show the electric field and the magnetic field at right angle to each other and in time phase, to the new representation which would highlight the fact that the electric and magnetic fields are time out of phase. The study of electromagnetic wave propagation has proved that the one-dimensional conventional representation of electromagnetic waves is inadequate. It does not support the fact that there are a number of resonant modes that exists in the cavity which has long been proved and accepted by authors in the field of electromagnetism. This is very much clear when dealing with electromagnetic waves in three dimensional space.
24

Origin of rutile-bearing ilmenite Fe-Ti deposits in Proterozoic anorthosite massifs of the Grenville Province

Morisset, Caroline-Emmanuelle 11 1900 (has links)
The Saint-Urbain and Big Island rutile-bearing ilmenite Fe-Ti oxide deposits are located in the composite 450 km² Saint-Urbain anorthosite (1055-1046 Ma, U-Pb zircon) and in the Lac Allard intrusion (1057-1062 Ma, U-Pb zircon) of the 11,000 km² Havre-Saint Pierre anorthosite suite, respectively, in the Grenville Province of Eastern Canada. Slow cooling rates of 3-4°C/m.y. are estimated for both anorthosites, based on combined U-Pb zircon/rutile/apatite and ⁴⁰Ar/³⁹ Ar biotite/plagioclase geochronology, and resulted from emplacement during the active Ottawan Orogeny. Slow cooling facilitated (1) diffusion of Zr from ilmenite and rutile, producing thin (10-100 microns) zircon rims on these minerals, and (2) formation of sapphirine via sub-so lidus reactions of the type: spinel + orthopyroxene + rutile ± corundum → sapphirine + ilmenite. New chemical and analytical methods were developed to determine the trace element concentrations and Hf isotopic compositions of Ti-based oxides. Rutile is a magmatic phase in the deposits with minimum crystallization temperatures of 781°C to 1016°C, calculated by Zr-in rutile thermometry. Ilmenite present in rutile-free samples has higher Xhem (hematite proportion in ilmenite), higher high field strength element concentrations (Xhem = 30-17; Nb = 16.1-30.5 ppm; Ta 1.28-1.70 ppm), and crystallized at higher temperatures than ilmenite with more fractionated compositions (Xhem = 21-11; Nb = 1.36-3.11 ppm; Ta = <0.18 ppm) from rutile-bearing rocks. The oxide deposits formed by density segregation and accumulation at the bottom of magma reservoirs, in conditions closed to oxygen, from magmas enriched in Fe and Ti. The initial ¹⁷⁶Hf/¹⁷⁷ Hf of rutile and ilmenite (Saint Urbain [SU] = 0.28219-0.28227, Big Island [BI] = 0.28218-0.28222), and the initial Pb isotopic ratios (e.g.²⁰⁶Pb/²⁰⁴ Pb: SU = 17.134-17.164, BI = 17.012-17.036) and ⁸⁷Sr/⁸⁶ Sr (SU = 0.70399-0.70532, BI = 0.70412-0.70427) of plagioclase from the deposits overlap with the initial isotopic ratios of ilmenite and plagioclase from each host anorthosite, which indicates that they have common parent magmas and sources. The parent magmas were derived from a relatively depleted mantle reservoir that appears to be the primary source of all Grenvillian anorthosite massifs and existed for --600 m.y. along the margin of Laurentia during the Proterozoic. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
25

Pressurized Chemical Looping Combustion of Natural Gas with Ilmenite for SAGD Application: An Oxidation Kinetic Study and Preliminary Air Reactor Model

Rana, Shazadi 14 May 2018 (has links)
To prevent the global surface temperature from increasing past the 2 oC target, it is necessary to address CO2 emissions from small point sources. Within Canada’s heavy oil industry, SAGD facilities use natural gas combustion to produce the large amounts of steam required for the process, which produces approximately 0.5-2 Mtonnes of CO2 per annum. A suitable technology for CO2 mitigation from a SAGD facility is Pressurized Chemical Looping Combustion. PCLC is an oxy-combustion, carbon capture technology with a relatively low predicted energy penalty of 3-4%. The process requires a dual, interconnected fluidized bed reactor system with circulating solids. Natural gas is converted in the fuel reactor via a solid metal oxide, which is then circulated to the air reactor for reoxidation with air. As the cost of air compression is significant, the economical feasibility of the process is reliant on air reactor performance. The objective of this study is to investigate the oxidation reaction and derive a kinetic model for reactor design and performance assessment purposes. Ilmenite ore was chosen as the metal oxide, as it is low cost and has desirable oxygen transport properties for PCLC. Pressurized TGA tests were conducted to study the effects of oxygen concentration, temperature and pressure on the rate of the oxidation reaction. The total pressure was varied from 1-16 bara at 900 oC with air. The oxygen concentration was varied from 2.5-21 vol%, and the temperature from 800-1000 oC at 8 bar. Temperatures below 850 oC resulted in segregation of the Fe and Ti phase in the ilmenite ore, leading to a reduction in the overall oxygen carrying capacity. Crack formation was observed at higher oxygen partial pressures, resulting in increased surface area for reaction and a fast reaction rate. At lower oxygen partial pressures, a solid-state diffusion controlled regime was observed due to the absence of fissures. A dual mechanistic oxidation kinetic model was derived at 8 bar, with 2nd order random nucleation dominating at lower conversions, and Jander’s solid state diffusion model dominating at higher conversions. The transition from the nucleation and growth to the diffusion-controlled portion occurred at higher conversions with higher oxygen partial pressure. The activation energy was 16.6 kJ/mol and 48.7 kJ/mol while the order of reaction with respect to oxygen was 0.3 and 1.3 for respectively the nucleation and growth, and diffusion-controlled regimes. A preliminary air reactor model is constructed as a turbulent bed. The turbulent bed is modelled as an axial dispersion reactor for a basic performance assessment.
26

New Techniques to Characterize and Remove Water-Based Drilling Fluids Filter Cake

Elkatatny, Salaheldin Mahmoud 03 October 2013 (has links)
Filter cake characterization is very important in drilling and completion operations. Heterogeneity of the filter cake plays a key role in the design of chemical treatments needed to remove the filter cake. The objectives of this study are to characterize the filter cake under static and dynamic conditions, evaluate the using of polylactic acid and chelating agents to remove calcium carbonate-based filter cake, assess glycolic acid to remove Mn3O4-based filter cake, and evaluate ilmenite as a weighting material for water-based drilling fluid. In order to characterize the filter cake, computer tomography (CT) was used in combination with the scanning electronic microscopy (SEM) to analyze the filter cake. A modified HPHT filter cell was developed to perform the filtration tests. A see-through-cell was used to check the compatibility of different chemicals that were used to remove the filter cake. The results obtained from the CT scan showed that the filter cake was heterogeneous and contained two layers with different properties under static and dynamic conditions. Under static conditions, the formation of filter cake changed from compression to buildup; while under dynamic conditions, the filter cake was formed under continuous buildup. Polylactic acid was used as a component of the drilling fluid components and the results obtained showed that the drill-in fluid had stable rheological properties up to 250˚F over 24 hrs. The removal efficiency of the filter cake was nearly 100% and the return permeability was about 100% for Indiana limestone and Berea sandstone cores, when using a weight ratio of polylactic acid to calcium carbonate 3 to 1. GLDA (pH 3.3) and HEDTA (pH 4) can be used to remove the filter cake in one step without using α-amylase enzyme solutions. GLDA (20 wt% in a 200 g solution and pH of 3.3) and HEDTA (20 wt% in a 200 g solution and pH 4) had 100% removal efficiency of the filter cake using Indiana limestone and Berea sandstone cores. Chelate solutions, GLDA (pH of 3.3 - 13) and HEDTA (pH of 4 and 7) were incompatible with α-amylase enzyme solutions over a wide range of temperatures. CT results showed that no formation damage was observed when using chelating agents as a breaker to remove the calcium carbonate filter cake. Manganese tetraoxide-based filter cake had a removal efficiency of 85% after 20 hrs soaking with glycolic acid (5 wt%) after soaking with α-amylase for 24 hrs, and 89% after reaction with acid mixture (1 wt% HCl and 7 wt% glycolic acid) for 16 hrs. for both methods, the retained permeability was 100% for Indiana limestone cores and 120% for Berea sandstone cores, which indication maximum productivity of these formations. Ilmenite-based filter cake was ideal for HPHT applications, 0.2 in. thickness and 12 cm3 filtrate under dynamic conditions. The filtrate volume was reduced by adding a minor amount of CaCO3 solids that improved the particles packing. No sag problem was observed when using the micronized ilmenite in water-based drilling fluids. Ilmenite has a negative zeta potential in alkaline media and had a stable dispersion in water at pH > 7.
27

Process development for the production of beneficiated titania slag

Van Dyk, Jacobus Philippus 12 October 2009 (has links)
There is a range of feed materials available for the production of Ti02 pigment. These range from natural materials like ilmenite and rutile to synthetic materials like synthetic rutile. There is a large increase in the price of titaniferous feed materials as the Ti02content of the material increases. To take advantage of the difference in price between chloride grade slag and natural rutile a process was developed to increase the Ti02 content of chloride grade slag from ~85% to more than 95%. This beneficiated titania slag product (BTS) should be ideal as feed material to the chloride pigment process. Initially several processes were evaluated. Particular emphasis was placed on the slag pre-treatment procedure. This was necessary as impurities could only be leached with difficulty from as-cast slag. A suitable pre-treatment procedure would render the impurities easily leachable, while the titanium is retained in an insoluble form. The results indicated that a process consisting of oxidation and reduction roasting would satisfy these requirements. Detailed process development was then undertaken on this process. The first phase of the process development was conducted in a coal fired fluid bed roaster. This allowed a set of semi optimised process parameters to be established, but the highest Ti02 content that could be achieved was 94%. A second stage of process development was under taken under more controlled conditions, using a small fluid bed reactor connected to a gas mixing system. Based on the results in this phase of the process development a new set of optimum process parameters was established. They are oxidation at 850°C for 1.5 h in an atmosphere containing 8% O2; reduction at 850°C for 10 min in a 100% CO atmosphere and leaching in boiling 20% hydrochloric acid for 12 h. Under these conditions it was possible to produce BTS containing > 97% Ti02. During oxidation of titania slag several important morphological changes occur. These are the conversion of the original M305 phase in the slag to a mixture of rutile/anatase, hematite and ferric M305. In the process the iron in the slag migrates to the outside surfaces of the slag particles where it is easily accessible during leaching. The iron containing phases are converted to ilmenite during reduction and during leaching the ilmenite is removed. This yields the BTS product. As the oxidation roast appeared to be a very important of the BTS process it was decided to investigate the mechanism of titania slag oxidation. A mechanism based on the nucleation energy that is required to form the relevant phases during oxidation was proposed. This mechanism was tentatively confirmed through selected experiments. / Thesis (PhD)--University of Pretoria, 2009. / Materials Science and Metallurgical Engineering / unrestricted
28

Cooling characteristics of high titania slags

Bessinger, Deon 21 July 2006 (has links)
Please read the abstract in the section 00front of this document Copyright 2000, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bessinger, D 2000, Cooling characteristics of high titania slags, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-07212006-102324 / > H 95 / Dissertation (MSc (Metallurgy))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
29

Process development for the removal of iron from nitrided ilmenite

Swanepoel, Jaco Johannes 11 July 2011 (has links)
The Council for Scientific and Industrial Research (CSIR) in South Africa is developing a process to produce titanium tetrachloride from a low-grade material such as ilmenite. Titanium tetrachloride can then be used as feed material for titanium metal or pigment-grade titanium dioxide production. Titanium tetrachloride is commercially produced by chlorinating synthetic rutile (<92% TiO2) or titanium dioxide slag (<85% TiO2) at ~900 ˚C. A drawback of chlorination at this temperature is that any constituents other than TiO2 will end up as hazardous waste material. A characteristic step in the CSIR’s proposed process is to nitride titanium dioxide contained in the feed material before it is sent for chlorination. The chlorination of the resulting titanium nitride is achieved at a much lower temperature (~200 ˚C) than that of the existing titanium dioxide chlorination reaction. An added advantage of the low-temperature chlorination reaction is that chlorine is selective mostly towards titanium nitride and metallic iron, which means that any other constituents present are not likely to react with the chlorine. The result is reduced chlorine consumption and less hazardous waste produced. The nitrided ilmenite must, however, be upgraded by removing all iron before it can be sent for chlorination. Commercial ilmenite upgrading processes, called synthetic rutile production, also require the removal of iron and other transition metals before chlorination. A literature review of existing ilmenite upgrading processes revealed four possible process options that could remove iron from nitrided ilmenite. Two of these process options, the Becher and Austpac ERMS SR processes, are proven process routes. The other two are novel ideas – one to passivate iron contained in the nitrided ilmenite against chlorination and the other to use ammonium chloride (as used in the Becher process) as a stoichiometric reactant to produce a ferrous chloride solution. A preliminary experimental evaluation of these process options indicated that the Austpac ERMS SR process is the most viable option for removing iron from nitrided ilmenite. The Austpac ERMS SR process was therefore selected as a template for further process development. A detailed Austpac ERMS SR process review found that two process units in the Austpac ERMS SR process could be used in a process that separates iron from nitrided ilmenite. These are the Enhanced Acid Regeneration System and the Direct Reduced Iron process units. The review also concluded that another leach unit would have to be developed. It was therefore necessary to further investigate the dissolution of nitrided ilmenite in hydrochloric acid. A detailed experimental evaluation of nitrided ilmenite dissolution in hydrochloric acid found that hydrochloric acid could be used as the lixiviant to selectively remove iron from nitrided ilmenite. The dissolution of metallic iron in 90 ˚C hydrochloric acid reached levels of at least 96% after only 60 minutes. An average “combined resistance” rate law was found that could be used to describe this dissolution reaction. The observed activation energy and Arrhenius pre-exponential factor were found to be equal to 9.45 kJ.mol-1 and 30.8 s-1 respectively. The Austpac ERMS SR process review and experimental results described above were then combined and used to propose a process that could be employed to remove iron from nitrided ilmenite. The proposed process was modelled using the Flowsheet Simulation module in HSC Chemistry 7.0 / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2010. / Chemical Engineering / MEng (Chemical Engineering) / unrestricted
30

Heat Capacity and Oxidation Kinetic Studies of Fe-Ti Composite Metal Oxide (ITCMO) using Simultaneous Differential Scanning Calorimetry and Thermogravimetric Analysis

Kumar, Prateek January 2017 (has links)
No description available.

Page generated in 0.0394 seconds