1 |
Exploración de técnicas automáticas de detección de líneas-B en imágenes de ultrasonido para diagnóstico de neumonía en pacientes pediátricosEche Zapata, Grecia María Thais 09 November 2017 (has links)
La neumonía es la principal causa de muerte en niños menores de 5 años a
nivel mundial. Los métodos radiológicos ionizantes (Rayos X y Tomógrafos
computarizados) son considerados los estudios de referencia para su
detección. Sin embargo, los pacientes son expuestos a radiación durante la
prueba, y el riesgo de daño es mayor en poblaciones pediátricas.
El presente trabajo analiza los histogramas de espacios intercostales
extraídos de videos ultrasónicos de pulmón en niños, para su clasificación
entre sanos y enfermos, dentro de un video. Para ello, se trabajó con 15
videos de pacientes enfermos y 15 videos de pacientes sanos.
Los espacios intercostales (región de interés) se encuentran debajo de la
línea pleural en cada cuadro de video. Para identificar la línea pleural se
implementó un algoritmo basado en el análisis del centroide de la imagen,
donde se obtuvo las áreas que conforman la zona pleural, y mediante
interpolación, los puntos de dicha línea. Estos puntos fueron determinantes
para la segmentación de los espacios intercostales, ya que marcaron la
referencia de inicio para la segmentación. Finalmente, de dichos espacios
segmentados, se extrajeron características numéricas de oblicuidad,
curtosis, desviación estándar, energía y promedio.
El potencial de clasificación de las propiedades fue evaluado
individualmente, en pares, y en un solo grupo de 5. Para el análisis de una
sola característica, el umbral óptimo de clasificación fue seleccionado por
Curva ROC (receiver operator characteristic); para el estudio de las
características en pares, se usó análisis SVM (support vector machine)
usando kernel RBF; y para el estudio de las 5 características en simultáneo
se usó PCA (principal component analaysis) para hallar las dos
componentes principales y aplicar SVM para la clasificación. Los resultados
revelaron que el promedio es el mejor discriminador cuando se analizaba
una sola característica, con 77% de sensibilidad, 75% de especificidad y
75% de exactitud. Cuando se analizó características en pares, el promedio y
oblicuidad permitieron la mejor clasificación con 93% de sensibilidad, 86%
de especificidad y 88% de exactitud. Finalmente, analizando las 5
características en simultáneo, los resultados fueron: 100% de sensibilidad,
98% de especificidad y 98% de exactitud. / Tesis
|
2 |
Detección de neumonía a través de imágenes de ultrasonidoRomero Gutierrez, Stefano Enrique 06 August 2015 (has links)
La neumonía es una enfermedad respiratoria de alto riesgo cuya tasa de mortandad en
niños menores de 5 años es el 15% a nivel mundial, siendo esta la más alta según la
Organización Mundial de la Salud [1]. Esta enfermedad afecta directamente a los alveolos
llenándolos de pus lo cual tiene como consecuencia que la respiración sea dolorosa [1].
Para detectar la enfermedad se utiliza maquinaria que utiliza radiación ionizante la cual
genera daños perjudiciales a los niños en crecimiento. Adicionalmente, para lograr la
adquisición de estas maquinarias se requiere infraestructura adecuada para hacer la toma
de las imágenes, generando costos elevados.
Alternativamente, se han realizado investigaciones con respecto al diagnóstico utilizando
ultrasonido las cuales tienen grados de sensibilidad y especificidad que se encuentran por
encima del 80% [10]. El problema de utilizar ultrasonido es que las imágenes no siempre
se ven de buena calidad por lo que es necesario un entrenamiento previo para detectar
neumonía en las imágenes ecográficas. Adicionalmente, al tratarse de un diagnóstico
subjetivo es necesario contar con personal que tenga experiencia en imágenes de
ultrasonido para lograr un diagnóstico adecuado.
El presente trabajo de investigación desarrolló algoritmos basados en las características
del tórax en las imágenes ecográficas para poder detectar neumonía en niños cuyas
edades oscilan entre 6 meses y 5 años. Para este fin, se generó una base de datos con
niños diagnosticados como sanos y enfermos por médicos de la Universidad Tulane en
Nueva Orleans y de la Universidad Peruana Cayetano Heredia. A partir de dicha base de
datos, se utilizó técnicas de umbralización [22] y de un algoritmo de flujo óptico [24] con
puntos de corte variables para desarrollar un código que permita determinar si un paciente
tiene o no neumonía.
En tal sentido, se logró codificar un algoritmo utilizando métodos de umbralización cuya
exactitud media fue del 83.9% con un coeficiente de variación de 0.06 y un algoritmo de
flujo óptico cuya exactitud media fue del 80% con un coeficiente de variación de 0.15.
Dichos resultados son alentadores debido a la cercanía en exactitud en comparación con
los diagnósticos clínicos mostrados en el presente documento.
Finalmente, se hizo la comparación de ambos métodos así como las recomendaciones
necesarias para futuras investigaciones. / Tesis
|
3 |
Exploración de técnicas automáticas de detección de líneas-B en imágenes de ultrasonido para diagnóstico de neumonía en pacientes pediátricosEche Zapata, Grecia María Thais 09 November 2017 (has links)
La neumonía es la principal causa de muerte en niños menores de 5 años a
nivel mundial. Los métodos radiológicos ionizantes (Rayos X y Tomógrafos
computarizados) son considerados los estudios de referencia para su
detección. Sin embargo, los pacientes son expuestos a radiación durante la
prueba, y el riesgo de daño es mayor en poblaciones pediátricas.
El presente trabajo analiza los histogramas de espacios intercostales
extraídos de videos ultrasónicos de pulmón en niños, para su clasificación
entre sanos y enfermos, dentro de un video. Para ello, se trabajó con 15
videos de pacientes enfermos y 15 videos de pacientes sanos.
Los espacios intercostales (región de interés) se encuentran debajo de la
línea pleural en cada cuadro de video. Para identificar la línea pleural se
implementó un algoritmo basado en el análisis del centroide de la imagen,
donde se obtuvo las áreas que conforman la zona pleural, y mediante
interpolación, los puntos de dicha línea. Estos puntos fueron determinantes
para la segmentación de los espacios intercostales, ya que marcaron la
referencia de inicio para la segmentación. Finalmente, de dichos espacios
segmentados, se extrajeron características numéricas de oblicuidad,
curtosis, desviación estándar, energía y promedio.
El potencial de clasificación de las propiedades fue evaluado
individualmente, en pares, y en un solo grupo de 5. Para el análisis de una
sola característica, el umbral óptimo de clasificación fue seleccionado por
Curva ROC (receiver operator characteristic); para el estudio de las
características en pares, se usó análisis SVM (support vector machine)
usando kernel RBF; y para el estudio de las 5 características en simultáneo
se usó PCA (principal component analaysis) para hallar las dos
componentes principales y aplicar SVM para la clasificación. Los resultados
revelaron que el promedio es el mejor discriminador cuando se analizaba
una sola característica, con 77% de sensibilidad, 75% de especificidad y
75% de exactitud. Cuando se analizó características en pares, el promedio y
oblicuidad permitieron la mejor clasificación con 93% de sensibilidad, 86%
de especificidad y 88% de exactitud. Finalmente, analizando las 5
características en simultáneo, los resultados fueron: 100% de sensibilidad,
98% de especificidad y 98% de exactitud.
|
4 |
Detección de neumonía a través de imágenes de ultrasonidoRomero Gutierrez, Stefano Enrique 06 August 2015 (has links)
La neumonía es una enfermedad respiratoria de alto riesgo cuya tasa de mortandad en
niños menores de 5 años es el 15% a nivel mundial, siendo esta la más alta según la
Organización Mundial de la Salud [1]. Esta enfermedad afecta directamente a los alveolos
llenándolos de pus lo cual tiene como consecuencia que la respiración sea dolorosa [1].
Para detectar la enfermedad se utiliza maquinaria que utiliza radiación ionizante la cual
genera daños perjudiciales a los niños en crecimiento. Adicionalmente, para lograr la
adquisición de estas maquinarias se requiere infraestructura adecuada para hacer la toma
de las imágenes, generando costos elevados.
Alternativamente, se han realizado investigaciones con respecto al diagnóstico utilizando
ultrasonido las cuales tienen grados de sensibilidad y especificidad que se encuentran por
encima del 80% [10]. El problema de utilizar ultrasonido es que las imágenes no siempre
se ven de buena calidad por lo que es necesario un entrenamiento previo para detectar
neumonía en las imágenes ecográficas. Adicionalmente, al tratarse de un diagnóstico
subjetivo es necesario contar con personal que tenga experiencia en imágenes de
ultrasonido para lograr un diagnóstico adecuado.
El presente trabajo de investigación desarrolló algoritmos basados en las características
del tórax en las imágenes ecográficas para poder detectar neumonía en niños cuyas
edades oscilan entre 6 meses y 5 años. Para este fin, se generó una base de datos con
niños diagnosticados como sanos y enfermos por médicos de la Universidad Tulane en
Nueva Orleans y de la Universidad Peruana Cayetano Heredia. A partir de dicha base de
datos, se utilizó técnicas de umbralización [22] y de un algoritmo de flujo óptico [24] con
puntos de corte variables para desarrollar un código que permita determinar si un paciente
tiene o no neumonía.
En tal sentido, se logró codificar un algoritmo utilizando métodos de umbralización cuya
exactitud media fue del 83.9% con un coeficiente de variación de 0.06 y un algoritmo de
flujo óptico cuya exactitud media fue del 80% con un coeficiente de variación de 0.15.
Dichos resultados son alentadores debido a la cercanía en exactitud en comparación con
los diagnósticos clínicos mostrados en el presente documento.
Finalmente, se hizo la comparación de ambos métodos así como las recomendaciones
necesarias para futuras investigaciones.
|
Page generated in 0.0621 seconds