• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shape Grammar Parsing : application to Image-based Modeling

Teboul, Olivier 01 June 2011 (has links) (PDF)
The purpose of this thesis was to perform facade image parsing with shape grammars in order to tackle single-view image-based 3D building modeling. The scope of the thesis was lying at the border of Computer Graphics and Computer Vision, both in terms of methods and applications.Two different and complementary approaches have been proposed: a bottom-up parsing algorithm that aimed at grouping similar regions of a facade image so as to retrieve the underlying layout, and a top-down parsing algorithm based on a very powerful framework: Reinforcement Learning. This novel parsing algorithm uses pixel-wise image supports based on supervised learning in a global optimization of a Markov Decision Process.Both methods were evaluated quantitatively and qualitatively. The second one was proved to support various architectures, several shape grammars and image supports, and showed robustness to challenging viewing conditions; illumination and large occlusions. The second method outperformed the state-of-the-art both in terms of segmentation and speed performances. It also provides a much more flexible framework, in which many extensions may be envisioned.The conclusion of this work was that the problem of single-view image-based 3D building modeling could be solved elegantly by using shape grammar as a Rosetta stone to decipher the language of Architecture through a well-suited Reinforcement Learning formulation. This solution was a potential answer to large-scale reconstruction of urban environments from images, but also suggested the possibility of introducing Reinforcement Learning in other vision tasks such as generic image parsing, where it have been barely explored so far.
2

Shape grammar parsing : application to image-based modeling / Grammaires de formes pour analyse d'images : application à la modélisation automatique

Teboul, Olivier 01 June 2011 (has links)
L’objectif de cette thèse était de résoudre le problème d’analyse d’image de façade avec a priori de forme procédurale en vue de l’appliquer à la modélisation 3D d’immeuble à partir d’une seule image. Le cadre de cette thèse se situe à la frontière de l’informatique graphique et de la vision par ordinateur, tant d’un point de vue des méthodes employées que des applications potentielles.Deux approches complémentaires ont été proposées: une méthode dite ascendante qui cherche à regrouper des régions similaires de l’image afin de révéler la structure sous-jacente de la façade ; et une méthode dite descendante basée sur les puissants principes de l’apprentissage par renforcement. Ce nouvel algorithme combine des mesures locales issues de méthodes d’apprentissage supervisé dans une optimisation globale d’un Processus de Décision Markovien, qui découvre la grammaire du bâtiment au fil des itérations.Ces deux méthodes ont été évaluées qualitativement et quantitativement. Les résultats ainsi obtenus, se sont avérés bien meilleurs que l’état de l’art sur le plan de la rapidité, de la qualité de segmentation, mais également au niveau de la flexibilité de la méthode et de ses extensions éventuelles. Cet algorithme a été abondamment testé sur différents types de grammaires de formes, sur différents styles architecturaux, avec différentes mesures sur les images, et s’est avéré particulièrement robuste aux conditions d’illuminations et aux occlusions.En conclusion, les grammaires de formes peuvent être utilisées comme une pierre de Rosette afin de déchiffrer le langage de l’architecture et permettent ainsi de modéliser un bâtiment 3D à partir d’une unique image, à travers un nouvel algorithme issu de l’apprentissage par renforcement. D’une part la méthode développée apporte une réponse au problème de reconstruction urbaine 3D à large échelle à partir d’images, et d’autre part elle laisse entrevoir de potentielles applications de l’apprentissage par renforcement en vision par ordinateur, domaine qui jusqu’alors ne s’y était que très peu intéressé. / The purpose of this thesis was to perform facade image parsing with shape grammars in order to tackle single-view image-based 3D building modeling. The scope of the thesis was lying at the border of Computer Graphics and Computer Vision, both in terms of methods and applications.Two different and complementary approaches have been proposed: a bottom-up parsing algorithm that aimed at grouping similar regions of a facade image so as to retrieve the underlying layout, and a top-down parsing algorithm based on a very powerful framework: Reinforcement Learning. This novel parsing algorithm uses pixel-wise image supports based on supervised learning in a global optimization of a Markov Decision Process.Both methods were evaluated quantitatively and qualitatively. The second one was proved to support various architectures, several shape grammars and image supports, and showed robustness to challenging viewing conditions; illumination and large occlusions. The second method outperformed the state-of-the-art both in terms of segmentation and speed performances. It also provides a much more flexible framework, in which many extensions may be envisioned.The conclusion of this work was that the problem of single-view image-based 3D building modeling could be solved elegantly by using shape grammar as a Rosetta stone to decipher the language of Architecture through a well-suited Reinforcement Learning formulation. This solution was a potential answer to large-scale reconstruction of urban environments from images, but also suggested the possibility of introducing Reinforcement Learning in other vision tasks such as generic image parsing, where it have been barely explored so far.
3

Image Parsing by Data-Driven Markov Chain Monte Carlo

Tu, Zhuowen 20 December 2002 (has links)
No description available.
4

Segmentation of facade images with shape priors / Segmentation des images de façade avec à priori sur la forme

Kozinski, Mateusz 30 June 2015 (has links)
L'objectif de cette thèse concerne l'analyse automatique d'images de façades de bâtiments à partir de descriptions formelles à priori de formes géométriques. Ces informations suggérées par un utilisateur permettent de modéliser, de manière formelle, des contraintes spatiales plus ou moins dures quant à la segmentation sémantique produite par le système. Ceci permet de se défaire de deux principaux écueils inhérents aux méthodes d'analyse de façades existantes qui concernent d'une part la coûteuse fidélité de la segmentation résultante aux données visuelles de départ, d'autre part, la spécificité architecturale des règles imposées lors du processus de traitement. Nous proposons d'explorer au travers de cette thèse, différentes méthodes alternatives à celles proposées dans la littérature en exploitant un formalisme de représentation d'à priori de haut niveau d'abstraction, les propriétés engendrées par ces nouvelles méthodes ainsi que les outils de résolution mis en œuvres par celles-ci. Le système résultant est évalué tant quantitativement que qualitativement sur de multiples bases de données standards et par le biais d'études comparatives à des approches à l'état de l'art en la matière. Parmi nos contributions, nous pouvons citer la combinaison du formalisme des grammaires de graphes exprimant les variations architecturales de façades de bâtiments et les modèles graphiques probabilistes modélisant l'énergie attribuée à une configuration paramétrique donnée, dans un schéma d'optimisation par minimisation d'énergie; ainsi qu'une nouvelle approche par programmation linéaire d'analyse avec à priori de formes. Enfin, nous proposons un formalisme flexible de ces à priori devançant de par ses performances les méthodes à l'état de l'art tout en combinant les avantages de la généricité de contraintes simples manuellement imposées par un utilisateur, à celles de la précision de la segmentation finale qui se faisait jusqu'alors au prix d'un encodage préliminaire restrictif de règles grammaticales complexes propres à une famille architecturale donnée. Le système décrit permet également de traiter avec robustesse des scènes comprenant des objets occultants et pourrait encore être étendu notamment afin de traiter l'extension tri-dimensionnelle de la sémantisation d'environnements urbains sous forme de nuages de points 3D ou d'une analyse multi-image de bâtiments / The aim of this work is to propose a framework for facade segmentation with user-defined shape priors. In such a framework, the user specifies a shape prior using a rigorously defined shape prior formalism. The prior expresses a number of hard constraints and soft preference on spatial configuration of segments, constituting the final segmentation. Existing approaches to the problem are affected by a compromise between the type of constraints, the satisfaction of which can be guaranteed by the segmentation algorithm, and the capability to approximate optimal segmentations consistent with a prior. In this thesis we explore a number of approaches to facade parsing that combine prior formalism featuring high expressive power, guarantees of conformance of the resulting segmentations to the prior, and effective inference. We evaluate the proposed algorithms on a number of datasets. Since one of our focus points is the accuracy gain resulting from more effective inference algorithms, we perform a fair comparison to existing methods, using the same data term. Our contributions include a combination of graph grammars for expressing variation of facade structure with graphical models encoding the energy of models of given structures for different positions of facade elements. We also present the first linear formulation of facade parsing with shape priors. Finally, we propose a shape prior formalism that enables formulating the problem of optimal segmentation as the inference in a Markov random field over the standard four-connected grid of pixels. The last method advances the state of the art by combining the flexibility of a user-defined grammar with segmentation accuracy that was reserved for frameworks with pre-defined priors before. It also enables handling occlusions by simultaneously recovering the structure of the occluded facade and segmenting the occluding objects. We believe that it can be extended in many directions, including semantizing three-dimensional point clouds and parsing images of general urban scenes

Page generated in 0.0774 seconds