Spelling suggestions: "subject:"image based telemetry"" "subject:"lmage based telemetry""
1 |
Automated reading of high volume water metersUlyate, Jessica 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: Accurate water usage information is very important for municipalities in order to provide
accurate billing information for high volume water users. Meter reading are currently
obtained by sending a person out to every meter to obtain a manual reading. This is very
costly with regards to time and money, and it is also very error prone.
In order to improve on this system, an image based telemetry system was developed
that can be retrofitted on currently installed bulk water meters. Images of the meter dials
are captured and transmitted to a central server where they are further processed and
enhanced. Character recognition is performed on the enhanced images in order to extract
meter readings.
Through tests it was found that characters can be recognised to 100% accuracy for
cases which the character recognition software has been trained, and 70% accuracy for
cases which is was not trained. Thus, an overall recognition accuracy of 85% was achieved.
These results can be improved upon in future work by statistically analysing results and
utilizing the inherent heuristic information from the meter dials.
Overall the feasibility of the approach was demonstrated and a way forward was indicated. / AFRIKAANSE OPSOMMING: Dit is belangrik vir munisipaliteite om akkurate water verbruikingssyfers te hê sodat hulle
akkurate rekeninge aan hoë volume water gebruikers kan stuur. Tans besoek ’n persoon
fisies elke meter om meterlesings te verkry. Dit is egter baie oneffektief ten opsigte van
tyd en geld. Die metode is ook baie geneig tot foute.
Ten einde te verbeter op hierdie stelsel was ’n beeld gebaseerde telemetrie stelsel
ontwerp wat geïnstalleer word op huidig geïnstalleerde hoë volume water meters. Beelde
van die meters word na ’n sentrale bediener gestuur waar dit verwerk word en die beeld
kwaliteit verbeter word. Karakter herkenning sagteware word gebruik om die meter lesings
te verkry vanuit die verbeterde beelde.
Deur middel van toetse is gevind dat karakters herken kan word tot op 100% graad
van akkuraatheid in gevalle waar die karakter herkenning sagteware opgelei is, en 70%
akkuraatheid vir gevalle waarvoor dit nie opgelei was nie. Dus was ’n algehele herkennings
akkuraatheid van 85% behaal. Hierdie resultate kan verbeter word in die toekoms deur
die resultate statisties te analiseer en die inherente heuristieke inligting van die meter
syfers te benutting.
Ten slotte, in die tesis was die haalbaarheid van die benadering gedemonstreer en ’n
weg vorentoe vir toekomstige werk aangedui.
|
Page generated in 0.0822 seconds